Cost-Effectiveness Analysis

Henry Glick

Epi 550

February 26, 2020

Outline

- · Introduction to cost-effectiveness analysis (CEA)
- Choice criteria for CEA
- Incremental cost-effectiveness ratios
- Net benefits (a transformation of CEA) and choice criteria
- · Additional topics

What is Commonly Meant by "Cost-Effective"?

- "Super RTL is looking to implement a new 'lean and cost-effective' structure as it slashes about 15 per cent of its 130-person workforce
- Cost effective resolution of small claims: final determination at settlement conference [without a hearing] will eliminate further attendances by all parties and substantially reduce costs of proceeding with low value claims
- "We're called Cost Effective Maintenance because we provid[e] you with the most cost effective solutions to engine maintenance problems...[O]ur [products]...are proven to be highly effective at fixing the problem[s]"
- "Using ETFs To Build A Cost-Effective Portfolio"

Cost-Effectiveness Analysis

- Estimates differences in costs and differences in outcomes between interventions
- · Costs and outcomes measured in different units
- Costs usually measured in money terms; outcomes in some other units
- If outcomes aggregated using measures of preference (e.g., quality-adjusted life years saved), referred to as cost utility analysis

Relative Measure

- No program "cost-effective" in abstract
- · Results meaningful in comparison with:
 - A predefined threshold for willingness to pay
 e.g., \$50,000 or \$100,000 per quality-adjusted life year
 - Other accepted and rejected interventions (e.g., a league tables)

Cost-Effectiveness "History"

- \$/Life saved
- \$/Year of life saved (YOL)
- \$/Quality adjusted life year saved (QALY)
- ??? US Congress and outlawing QALYs ???

Why CEA Rather Than CBA?

- · Not precisely clear
 - Potential difficulties in measurement
 - Discomfort with placing a dollar value directly on a particular person's life (rather than years of life in general)
 - QALYs / life years more equally distributed than wealth
 - Health more a "right" than a commodity
 - Implies 1 person 1 vote may be more appropriate than 1 dollar 1 vote
 - Cost-effectiveness analysis uses 1 QALY/year 1 vote

Cost-Effectiveness Ratios (II)

- A ratio can exist for every pair of options (i.e., combinations n things take 2 at a time)
 - 1 option (case series), no ratios calculated
 - 2 options, 1 ratio
 - 3 options, 3 ratios (option 1 versus option 2, option 1 versus option 3, and option 2 versus option 3)
- In efficient selection algorithm, don't necessarily calculate all possible ratios

Which are the Right Ratios to Consider?

Sixth Stool Guaiac Suppose we can use 1 through 6 stool guaiacs when screening for cases of colorectal cancer 					
# Guaiac Tests	Cost	Cases			
1	7.75	.00659469			
2	10.77	.00714424			
3	13.02	.00719004			
4	14.81	.00719385			
5	16.31	.00719417			
6	17.63	.00719420			
Neuhauser and Lew	cki, NEJM, 1975;2	293:226-8.			
 What calcut them? 	llations might	help make choice between			

Mistake #1						
 Divide therapy's cost by its outcome; compare resulting ratios 						
# Guaiac Tests	Cost		Cases		C _i /E _i	
1	7.75	÷	.00659469	=	1175	
2	10.77	÷	.00714424	=	1508	
3	13.02	÷	.00719004	=	1811	
4	14.81	÷	.00719385	=	2059	
5	16.31	÷	.00719417	=	2267	
6	17.63	÷	.00719420	=	2460	
Sometimes (mistakenly?) referred to as average cost- effectiveness ratios						

Dividing a Therapy's Costs by Its Effects is "Generally Uninformative"						
	Cost	QALYs	C _i /Q _i			
Exampl	e 1					
Rx1	2,800	0.28	10,000			
Rx2	5,800	0.29	20,000			
Exampl	e 2					
Rx1	2,800	0.28	10,000			
Rx2	11,200	0.56	20,000			
MEETI SPEcies of						

Dividing a Therapy's Costs by Its Effects is "Generally Uninformative"						
	Cost	QALYs	C _i /Q _i			
Exampl	e 1					
Rx1	2,800	0.28	10,000			
Rx2	5,800	0.29	20,000			
(5,800-2,800) / (0.29-0.28) = 300,000						
Exampl	e 2					
Rx1	2,800	0.28	10,000			
Rx2	11,200	0.56	20,000			
(11,200-2,800) / (0.56-0.28) = 30,000						

Outline

- Introduction to cost-effectiveness analysis (CEA)
- Choice criteria for CEA
- Incremental cost-effectiveness ratios
- Net benefits (a transformation of CEA) and choice criteria
- · Additional topics

Which are the Right Ratios to Consider?

Sixth Stool Guaiac Suppose we can use 1 through 6 stool guaiacs when screening for cases of colorectal cancer 				
# Guaiac Tests	Cost	Cases		
1	7.75	.00659469		
2	10.77	.00714424		
3	13.02	.00719004		
4	14.81	.00719385		
5	16.31	.00719417		
6	17.63	.00719420		
Neuhauser and Lew	icki, NEJM, 1975;29	93:226-8.		
 What calcut them? 	Ilations might h	nelp make choice between		

-			
-			

Mistake #1						
 Divide therapy's cost by its outcome; compare resulting ratios 						
# Guaiac Tests	Cost		Cases		C _i /E _i	
1	7.75	÷	.00659469	=	1175	
2	10.77	÷	.00714424	=	1508	
3	13.02	÷	.00719004	=	1811	
4	14.81	÷	.00719385	=	2059	
5	16.31	÷	.00719417	=	2267	
6	17.63	÷	.00719420	=	2460	
6 17.63 ÷ .00/19420 = 2460 • Sometimes (mistakenly?) referred to as average cost-effectiveness ratios						

	Cost	QALYs	C_i / Q_i			
Exampl	e 1					
Rx1	2,800	0.28	10,000			
Rx2	5,800	0.29	20,000			
	(5,800-2,80	00) / (0.29-0.28) = 3	00,000			
Exampl	e 2					
Rx1	2,800	0.28	10,000			
Rx2	11,200	0.56	20,000			
(11,200-2,800) / (0.56-0.28) = 30.000						

Mistake #2						
 Calculate ratios for all therapies versus 1 guaiac; compare resulting ratios 						
# Guaiac Tests	Cost	∆Cost	Cases	ΔCases	ACER*	
1	7.75		.00659469			
2	10.77	3.02	.00714424	.00054955	5495	
3	13.02	5.27	.00719004	.00059535	8852	
4	14.81	7.06	.00719385	.00059916	11783	
5	16.31	8.56	.00719417	.00059948	14279	
6	17.63	9.88	.00719420	.00059951	16480	
$(C_i - C_1) / (E_i - E_1)$						

Average Cost-Effectiveness Ratio

- Ratios calculated by comparing one therapy to all other therapies (correctly) referred to as average costeffectiveness ratios
- Definition: Comparison of costs and effects of each intervention with a single option, often "do nothing" or usual care option
 - Sometimes study sponsor's therapy

Average Cost-Effectiveness Ratios Goal of algorithm: choose strategy that provides largest health outcome that we are still willing to pay for 						
# Guaiac Tests	Cost	∆Cost	Cases	∆Cases	ACER	
1	7.75		.00659469			
2	10.77	3.02	.00714424	.00054955	5495	
3	13.02	5.27	.00719004	.00059535	8852	
4	14.81	7.06	.00719385	.00059916	11783	
5	16.31	8.56	.00719417	.00059948	14279	
6	17.63	9.88	.00719420	.00059951	16480	
6 17.63 9.88 .00719420 .00059951 16480 • Why don't average ratios allow identification of this strategy?						

What's Wrong with the Average Cost- Effectiveness Ratio?						
# Guaiac Tests	Cost	∆Cost	Cases	ΔCases	ACER	
1	7.75		.00659469			
5	16.31	8.56	.00719417	.00059948	14279	
6	17.63	9.88	.00719420	.00059951	16480	
 16,480 ACER from 6 vs 1 guaiacs gives 6 guaiacs credit for 16.31 already spent and .00719417 cases already detected with 5 guaiacs 						
 However, if comparing 6 to 5, spending 1.32 (17.63- 16.31) more and gaining only 0.00000003 cases detected 						
1.32 / 0.00000003 = \$44m / incremental case detected						

Incremental Cost-Effectiveness Ratios

- Compares costs and effects among alternative options
- When there are only 2 options being evaluated, average and incremental cost-effectiveness ratios are identical

Incremental Cost-Effectiveness Ratio Basic idea for correct ratio: calculate ratio for 2 vs 1, 3 vs						
2,4 vs 3, 0	0 15 4, 6		5			
# Guaiac Tests	Cost	∆Cost	Cases	ΔCases	ICER*	
1	7.75		.00659469			
2	10.77	3.02	.00714424	.00054955	5495	
3	13.02	2.25	.00719004	.00004580	49.1k	
4	14.81	1.79	.00719385	.00000381	470k	
5	16.31	1.50	.00719417	.00000032	4.7m	
6	17.63	1.32	.00719420	.00000003	44.0m	
* $(C_i - C_{i-1}) / (E_i - E_{i-1})$						
• "Basic idea" correct in this case, but can have problems						

Potential Problems With Calculating ICERS

- Problem 1: Treatments must be correctly ordered
- Problems 2: Never want to spend more and obtain less outcome
- Problem 3: Don't want to buy less outcome for a higher cost per unit of outcome

Choice Criteria For Cost-Effectiveness Ratios

- Choose options with acceptable average and incremental cost-effectiveness ratios (i.e., whose ratios with all other options are acceptable)
- Subject to:
 - Budget Constraint?
 - Acceptable Ratio?
- Not accounting for uncertainty around ratios
- Consider 3 mutually exclusive options and a willingness to pay of 40k/50k

S

	Option 1	Option 2	Option 3
Expected Costs	10,000	135,000	270,000
Expected QALYs	20	25	30
D. //	Option 2	Option 3	
Ratios			
Option 1	25,000	26,000	

	Option 1	Option 2	Option 3
Expected Costs	10,000	135,000	235,000
Expected QALYs	20	25	26
Ratios	Option 2	Option 3	
Option 1	25,000	37,500	
Option 2		100,0000	Adopt?

	Option 1	Option 2	Option 3
Expected Costs	10,000	210,000	230,000
Expected QALYs	20	21	21.5
Ratios	Option 2	Option 3	
Option 1	200,000	146,667	
Option 2		40,000	Adopt?

Fairness of Criteria?

- In example 2 above, 3 options available; if WTP = 40,000, reject Option 3
- Suppose options are drugs, and patient 1 can take any of 3, but patient 2 is allergic to drug 2 and can't take it
- What do we choose?

	Drug 1	Drug 2	Drug 3
Patient 1			
Exp Costs	10,000	135,000	235,000
ExpQALYs	20	25	26
Patient 2			
Exp Costs	10,000		235,000
Exp QALYs	20		26

Patient 1	Option 2	Option 3	
Option 1	25,000	37,500	
Option 2		100,0000	Adopt?
Patient 2	Option 3		
Option 1	37,500		Adopt?

Treatment	Cost	YOLS
S1 Sig Q10	1290	17.378
S2 U+Sig, Q10	1810	17.402
S3 C Q(10)	2030	17.396
S4 Sig Q5	1535	17.387
S5 U+Sig, Q5	2035	17.407

Choice Among Screening Strategies

- Which therapy should be adopted if acceptability criterion is 20,000/ YOL saved? 40,000 / YOL saved? 50,000 / YOL saved?
- Demonstrate 4(+) methods for selecting single therapy from among 5 candidate therapies
 - Methods all based on selecting therapy with acceptable ratio
 - All 4(+) are transformations of one another -- use same information in slightly different ways -- and all recommend identical cost-effective strategy

Method 1: Incremental Cost-Effectiveness Ratio

- Previously indicated basic idea was to calculate ratio for 2 vs 1, 3 vs 2, 4 vs 3, 5 vs 4
- Also noted 3 problems/complications:
 - 1. For incremental cost-effectiveness ratios and incremental NMB, treatments must be correctly ordered
 - 2. Never want to spend more and obtain less outcome
 - 3. Don't want to buy less outcome for a higher cost per unit of outcome

Treatment	Cost	YOLS
1 Sig Q10	1290	17.378
2 U+Sig, Q10	1810	17.402
3 C Q(10)	2030	17.396
4 Sig Q5	1535	17.387
5 U+Sig, Q5	2035	17.407

and the second sec	order therapies	in ascending or
of either outcomes of	r cost	in according on
Treatment	Cost	YOLS
S1 Sig Q10	1290	17.378
S4 Sig Q5	1535	17.387
S3 C Q(10)	2030	17.396
S2 U+Sig, Q10	1810	17.402
	2035	17 407

• 5 strategies not in ascending order of either cost or effect

- Revised so correctly ordered by effect
- Final recommendation unaffected by ranking variable

Problem/Complication 2

- Never want to spend more (increased cost) and obtain less outcome (reduced effects) than at least one other alternative
 - Referred to as "strong" dominance

Efficien	t Algorithm: S	step 2
liminate therapies t	hat are strongly	dominated
Treatment	Cost	YOLS
S1 Sig Q10	1290	17.378
4 Sig Q5	1535	17.387
63 C Q(10)	2030	17.396
S2 U+Sig, Q10	1810	17.402
S5 U+Siq, Q5	2035	17.407

S2 strongly dominates S3

Eliminate S3 from consideration for adoption

E	Efficient	Algorith	m: Step	3	
 Compute inc remaining ad – i.e., betwe and optior 	remental o jacent pai en option ns S2 and	cost-effe r of outc s S1 and s5	ctiveness i comes d S4; optio	ratios foi ns S4 ai	r each nd S2;
Treatment	Cost	Δ	YOLS	Δ	ICER
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	245	17.387	.009	27,222
S3 C, Q10	2030	495	17.396	.009	SDOM
S2 U+Sig, Q10	1810	275	17.402	.015	18,333
S5 U+Sig, Q5	2035	225	17.407	.005	45,000

	Alterr	ative R	Ranking		
 Ignoring conv lowest doesn 	vention an 't change	d rank o results	rdering fro	m highe	est to
Treatment	Cost	Δ	YOLS	Δ	ICER
S5 U+Sig, Q5	2035	225	17.407	.005	45,000
S2 U+Sig, Q10	1810	275	17.402	.015	18,333
S3 C, Q10	2030	495	17.396	.009	SDOM
S4 Sig Q5	1535	245	17.387	.009	27,222
S1 Sig Q10	1290		17.378		
					AND CONTRACT

E	fficient Alg	gorithn	n: Step 3 ((2)	
 If resulting in highest (altownshift) Step 6 	ncremental ernative ran	ratios r king, hig	anked from ghest to low	lowest vest), sk	to kip to
 If not, need 	to address	problen	n/complicati	ion 3	
eatment	Cost	Δ	YOLS	Δ	ICER
Sig Q10	1290		17.378		

Treatment	Cost	Δ	YOLS	Δ	ICER
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	245	17.387	.009	27,222
S3 C, Q10	2030	495	17.396	.009	SDOM
S2 U+Sig, Q10	1810	275	17.402	.015	18,333
S5 U+Sig, Q5	2035	225	17.407	.005	45,000

Problem/complication 3

- Rather buy more outcome for a lower cost per unit than less outcome for a higher cost per unit
- Referred to as "extended" or "weak" dominanceMay need to repeat evaluation of weakly dominated
- May need to repeat evaluation of weakly dominated therapies several times

E	Efficient	Algorith	ım: Step	4	
Eliminate the	rapies tha	it are we	akly domir	nated	
Treatment	Cost	Δ	YOLS	Δ	ICER
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	245	17.387	.009	27,222
S3 C, Q10	2030	-	17.396		SDOM
S2 U+Sig, Q10	1810	275	17.402	.015	18,333
S5 U+Sig, Q5	2035	225	17.407	.005	45,000
S4 weakly do	ominated t	by S2		•	

- S2 more effective than S4: .015 vs .009Ratio for S2 vs S4 (18,333) less than ratio for S4
 - Ratio for S2 vs S4 (18,333) less than ratio for S4 vs S1 (27,222)

Eliminate S4	Efficient /	Algorith C ALCUI	im: Step : . ATE RAT	5 I O for S	2 vs S1
Treatment	Cost	Δ	YOLS	Δ	ICER
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535		17.387		WDOM
S 3 C, Q10	2030	-	17.396		SDOM
S2 U+Sig, Q10	1810	520	17.402	.024	21,667
S5 U+Sig, Q5	2035	225	17.407	.005	45,000
 Resulting ratidominated therapy's orig E.g., 18,33 	io will alwa erapy anc ginal incre 33 < 21,66	ays be le l greater mental r 67 < 27,2	ess than ra than weak atio 222	tio of we kly domi	eakly nating

Maximum W/TP	Therapy
<21 667	S1
21.667 to 45.000	S2
45,000+	S5

- ICERs from selection algorithm define a set of ranges of values of willingness to pay for which different therapies are preferred
- Identify acceptable therapy from among 3 candidate therapies by comparing W with ranges
- · NMB algorithms do not provide these ranges directly
 - Require additional calculations of which calculation of ICERs possibly easiest

Defining Cost-Effe	ctiveness Ranges
Maximum WTP	Therapy
<21,667	S1
21,667 to 45,000	S2
45,000+	S5

- NMB algorithm provides point estimates/CI for a given willingness to pay
- Don't directly define a set of ranges of values of willingness to pay for which different therapies are preferred
- Requires additional calculations
 - Calculation of ICERs possibly being easiest of these calculations

Ful	l Cost-Ef	fective	eness Ta	ble	
Treatment	Cost	ΔC	YOLS	ΔY	ICER
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	-	17.387		WD
S3 C Q(10)	2030	-	17.396		SD
S2 U+Sig, Q10	1810	520	17.402	0.024	21,667
S5 U+Sig, Q5	2035	225	17.407	0.005	45,000
SD = strong domin	ance; WD	= wea	k dominar	ice	
					AND CHICKEN

Reduc	ed Cost-	-Effect	iveness	Table	
Treatment	Cost	ΔC	YOLS	ΔY	ICER
S1 Sig Q10	1290		17.378		
S2 U+Sig, Q10	1810	520	17.402	0.024	21,667
S5 U+Sig, Q5	2035	225	17.407	0.005	45,000

Sig₂,q5 and Frontier

- Weakly dominated, but
 - Uncertainty (i.e., confidence region) might be such that we may not be able to exclude it from frontier
 - Weakly dominated therapies that lie close to frontier, "might be considered [a] reasonable alternative...if there were noneconomic reasons to prefer them, such as patient or physician acceptability, availability, or other factors." Mark D. JAMA. 287;202:2428-9.

Maximum WTP	Therapy
<21,667	S1
21,667 to 45,000	S2
45,000+	S5

- Identify acceptable therapy from among 3 candidate therapies by comparing W with ranges
- NMB algorithms do not directly provide these ranges

100.311	L
	L
	L
See S	L
SCRICK-	

200

 A composite measure (part cost-effectiveness, part cost benefit analysis), usually expressed in dollar terms, that is derived by rearranging cost-effectiveness decision rule:

W > $\Delta C / \Delta Q$

where W = willingness to pay (e.g., 50 or 100K)

Net Benefits (II)

- Two forms of net benefit expression exist depending on rearrangement of decision rule
 - Most commonly used net monetary benefits expressed on cost scale (NMB)

$(W * \Delta Q) - \Delta C$

 OR alternatively net health benefits (NHB) expressed on health outcome scale:

$\Delta Q - (\Delta C / W)$

- Potential disadvantage: NHB undefined when WTP equals 0
- Both expressions = formulas for a line

NMB Rationale

- Overcomes problems associated with parametric tests of ratio
 - Study result is a difference in means, not a ratio of means, and is always defined and continuous
- Substitutes "poor-person's" willingness to pay measure (the acceptability criterion) for more theoretically correct individually-measured willingness to pay
 - Differs from cost-benefit analysis in that it does not aggregate individuals' willingnesses to pay for health
- All else equal, adopt programs with net monetary (health) benefits greater than 0
 - i.e., programs with incremental cost-effectiveness ratios less than WTP

Different Lines Have Different Values of Net Benefit

- + For NMB, line's net benefits = -intercept = $-\Delta C$ (because at origin, W = 0, thus W ΔQ = 0)
- For line passing through origin, NMB = 0
 - Lines below and to right of net benefit=0 line have positive net benefits (i.e., acceptable costeffectiveness ratios)
 - Lines above and to left have negative net benefits
 - *** Method 2, above, is equivalent to selecting the therapy with largest valued NMB ***

Diagnostic Test: P* and Cost-Effectiveness/NMB

Cost-benefit notation

$$\mathsf{p^{\star}=}\frac{\Delta\mathsf{O}_{\mathsf{D}\text{-}}}{\Delta\mathsf{O}_{\mathsf{D}\text{-}}+\Delta\mathsf{O}_{\mathsf{D}\text{+}}}$$

Cost-effectiveness/NMB notation

$$p^{*} = \frac{W \Delta e_{D_{-}} - \Delta c_{D_{-}}}{W (\Delta e_{D_{-}} + \Delta e_{D_{+}}) - (\Delta c_{D_{-}} + \Delta c_{D_{+}})}$$

Diagnostic Test: Do Nothing / Test Threshold

• Cost-benefit notation
$$p_{tt} = \frac{(1\text{-spec}) \Delta O_{D_{-}} + T_{c}}{(1\text{-spec}) \Delta O_{D_{-}} + \text{sens } \Delta O_{D^{+}}}$$

Cost-effectiveness/NMB notation

$$p_{tt} = \frac{(1\text{-spec}) (W \Delta e_{D_{-}} - \Delta c_{D_{-}}) + T_{C}}{(1\text{-spec}) (W \Delta e_{D_{-}} - \Delta c_{D_{-}}) + \text{sens} (W \Delta e_{D_{+}} - \Delta c_{D_{+}})}$$

Method 3. Monetary Benefit

- · Probably easiest of NMB methods but least used
- Step 1. Calculate each therapy's MB (also referred to as NB) by multiplying therapy's average (NOT incremental) effect times WTP and subtracting therapy's average cost
- For therapy i:

$$MB_i = W\overline{Q}_i - \overline{C}_i$$

- · Select therapy with largest MB
- Yields therapy choice consistent with Method 1, BUT
 Need additional calculations to obtain boundaries between ranges of W where each therapy is best
 - With calculations of ICERs possibly easiest

Example Method 3: Monetary Benefit (MB)					
 Multiply W * Effect; subtract cost; compare resulting MB Uses cost and effect, not ∆cost and ∆effect 					
			MB,	MB,	MB,
	Cost	YOLS	20K	40K	50K
S1 Sig, Q10	1290	17.378	346,270	693,830*	867,610
S4 Sig, Q5	1535	17.387	346,205	693,945	867,815
S2 U+Sig, Q10	1810	17.402	346,230	694,270	868,290
S3 C,Q10	2030	17.396	345,890	693,810	867,770
S5 U+Sig,Q5	2035	17.407	346,105	694,245	868,315
* (40,000 * 17.378) =	* (40,000 * 17.378) = 695,120; subtracting 1290 = 693,830				

MB Advantages

- · Don't need to reorder therapies
- Don't need algorithm to select cost-effective therapy - i.e., Choose therapy with largest MB
- Allows calculation of magnitude of difference in MB between therapies
 - By simple subtraction of different the rapies' $\ensuremath{\mathsf{MBs}}$
 - Not available from ICER calculations

MB Disadvantages

- Need to recalculate MB for every policy relevant W
- Even though we can draw frontier (see Method 4), willingness to pay cut-offs where each therapy is preferred over others not directly reported by any single MB calculation
 - Calculation of ICERs may be easiest method for identifying ranges
- · Can't always identify weakly dominated therapies
 - Identification useful because there is no value of W for which they represent best value (i.e., aren't in the choice set)

Method 4, Average Net Monetary Benefit (ANMB)

- Akin to average cost-effectiveness ratio (ACER)
 All calculations compared to 1 comparator
- Because there are no ratios, doesn't yield mistaken recommendations that use of ACER does
- In literature, ANMB typically referred to as NMB
- NMB/ANMB most commonly reported measure of NMB in literature

Steps in Calculating NMB/ANMB

- Subtract one therapy's costs from all other therapies (including itself)
- Subtract same therapy's effects from all other therapies (including itself)
- Multiply the W times difference in effect and subtract out difference in cost
- · Select therapy with largest NMB/ANMB

~

Example: Method 4, NMB/ANMB					
			ANMB,	ANMB,	ANMB,
	∆Cost*	∆YOLS*	20K	40K	50K
S1 Sig, Q10	0	0	0	0	0
S4 Sig, Q5	245	0.009	-65	115	205
S2 U+Sig, Q10	520	0.024	-40	440	680
S3 C,Q10	740	0.018	-380	-20	160
S5 U+Sig,Q5	745	0.029	-165	415	705

 $\Delta cost = C_i - C_1; \Delta YOLS = YOLS_i - YOLS_1$

• For values of W of 20k, 40k, and 50k, reach same conclusions as methods 1 - 3

Subtracting S1's MB from MB Also Yields ANMB						
			MB,	S1 MB,	ANMB,	
	Cost	YOLS	20K	20K	20K	
S1 Sig, Q10	1290	17.378	346,270	346,270	0	
S4 Sig, Q5	1535	17.387	346,205	346,270	-65	
S2 U+Sig, Q10	1810	17.402	346,230	346,270	-40	
S3 C,Q10	2030	17.396	345,890	346,270	-380	
S5 U+Sig,Q5	2035	17.407	346,105	346,270	-165	
Magnitude of benefit of choice: S1's net benefit at least 40 greater than any other therapy						

Frontier Selection Algorithm

- For a given W, select therapy with highest nonnegative point on NMB lines
 - E.g., select strategy 5 if W = 50,000
- For a given W, if points on all NMB lines are negative, reference therapy is preferred
 - Below 21,667 black line on X axis is highest, so therapy 1 preferred
 - E.g., select strategy 1 if W = 15,000

(A)NMB Advantages

- · Don't need to reorder therapies
- Don't need algorithm to select cost-effective therapy – i.e., Choose therapy with largest (A)NMB
- Provides estimate of magnitude of difference in (A)NMB between therapies
 - Magnitude unavailable from ICER calculations

ICERs, Like SSLRs, Throw Away Information

- An infinite number of combinations of estimates of ΔC and ΔQ all have same ICER (e.g., 30,000)
- If ICER = W, they all have the same NMB
- · Example:
 - Assume W = 30.000, therapy A's ΔC = 3000 and ΔQ = 0.1, and therapy B's ΔC = 6000 and ΔQ = 0.2
 - Both have same ICER (30,000), and same NMBs.
 Therapy A: 30,000*0.1 3000 = 0
 - Therapy B: 30,000*0.2 6000 = 0

ICERs, Like SSLRs, Throw Away Information (2)

- If ICER ≠ W, each ΔC/ΔQ pair that has an ICER of 30,000 will have a different NMB
- · Example:
 - Assume W = 50.000, therapy A's ΔC = 3000 and ΔQ = 0.1, and therapy B's ΔC = 6000 and ΔQ = 0.2
 - Both have same ICER (30,000), but different NMBs.
 - If W = 50,000
 - Therapy A: 50,000*0.1 3000 = 1,000
 - Therapy B: 50,000*0.2 6000 = 4,000
 - Difference in net monetary benefit = 3,000

(A)NMB Disadvantages

- Need to recalculate (A)NMB for every policy relevant W
- Even though we can draw frontier, cut-offs for ranges of willingness to pay where each therapy is preferred over others not directly reported by any single (A)NMB calculation
 - Calculation of ICERs may be easiest method for identifying range cut-offs
- · Can't always identify weakly dominated therapies
 - Identification useful because there is no value of W for which they represent best value (i.e., aren't in the choice set)

Method 5. INMB Selection

- Can follow a modified version of method 1 to calculate incremental NMB (INMB)
- · Modifications include:
 - In step 3, calculate INMB rather than costeffectiveness ratios
 - Proceed to selection algorithm if:
 - All INMB are positive, OR
 - All INMB are negative, OR
 - First N_i therapies have positive INMB and remaining N_j therapies have negative INMB
 - Otherwise, continue to step 4

See Appendix for Explicit Steps

 \odot

10,000	S1
20,000	S1
40,000	S2
50,000	S5

	Exercise: Selecting a Therapy						
• Su foll	 Suppose you evaluated 5 therapies and observed the following costs and effects 						
• Us W1	 Using method 1, which strategy would you recommend if WTP = 30,000, 50,000, 75,000 and 150,000? 						
	Strategy	Total Cost	QALYs				
	1	678	35.6656				
	2	635	35.6650				
	3	655	35.6655				
	4	644	35.6653				
	5 683 35.6657						
				and a state of the			

	Ste	р 1	
• Step 1. ???			
Strategy	Total Cost	QALYs	-
1	678	35.6656	-
2	635	35.6650	
3	655	35.6655	
4	644	35.6653	
5	683	35.6657	_

Rank Order						
• Step 1. Ra	nk order therapie	s by increasing	cost or effect			
Strategy	Total Cost	QALYs	_			
2	635	35.6650	-			
4	644	35.6653				
3	655	35.6655				
1	678	35.6656				
5	683	35.6657				
			=			

• Step 2. ???
Strategy Total Cost QALYs
2 635 35.6650
4 644 35.6653
3 655 35.6655
1 678 35.6656
5 683 35.6657

Dominated Therapies						
Step 2. Elir	minate any strong	gly dominated th	erapies			
Strategy	Total Cost	QALYs				
2	635	35.6650	•			
4	644	35.6653				
3	655	35.6655				
1	678	35.6656				
5	683	35.6657				
There are no strongly dominated therapies						

Step 3		
• Step 3. ???		
Strategy	Total Cost	QALYs
2	635	35.6650
4	644	35.6653
3	655	35.6655
1	678	35.6656
5	683	35.6657

8

	Calculate ICERS		
• Step 3. Ca	lculate increment	al cost-effective	ness ratios
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
1	678	35.6656	230,000
5	683	35.6657	50,000

	Ste	p 4	
• Step 4. ???)		
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
1	678	35.6656	230,000
5	683	35.6657	50,000
			and the second s

١	Weakly Domina	ated Therapie	S
Step 4. Elii	minate any weakl	y dominated the	erapies
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
4	678	35.6656	230,000
5	683	35.6657	50,000
• Eliminate s strategy 5	strategy 1 with an is more effective	ICER of 230k b and has a lower	ecause ICER

	Ste	p 5	
• Step 5. ???	?		
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
4	678	35.6656	230,000
5	683	35.6657	50,000

• Step 5. Re	Recalcula calculate ICERS	te ICERS	
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
4	678	35.6656	230,000
5	683	35.6657	140,000

	Ste	p 6	
• Step 6. ???	?		
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
4	678	35.6656	230,000
5	683	35.6657	140,000
			AND CONTRACT

	Therapy S	Selection	
 Step 6. Se maximum 	lect option with la WTP	rgest ICER that i	is lower than
Strategy	Total Cost	QALYs	ICER
2	635	35.6650	
4	644	35.6653	30,000
3	655	35.6655	55,000
4	678	35.6656	230,000
5	683	35.6657	140,000
• #2 if WTP WTP=75,0	<30,000; #4 if WT 00; #5 if WTP=18	P=50,000; #3 if 50,000	

Maximum WTP	Therapy
<30,000	S2
30,000 to <55,000	S4
55,000 to <140,000	S3
140,000+	S5

Simultaneous Comparison

- Description of selection algorithm may suggest a path through different options, with adoption of lower cost/ effect pairs before adoption of higher cost/effect pairs
- Not true
 - All 4 algorithms are simply step-by-step procedures that simultaneously compare all options as done by:
 - Identifying tangency between NMB lines and " health production" frontier, or
 - Comparing MBs

What Is Maximum Acceptable Ratio?

- Traditionally, cost-effectiveness ratios less than \$40,000 to \$50,000 per QALY saved (or NMB cost lines defined using these ratios) have been considered acceptable
- Little analytic attention has been given to identifying an appropriate acceptability criterion
- Continuing debate about whether threshold in U.S. has increased (e.g., at a minimum to \$100,000 per QALY)
- Not clear that thresholds derived for point estimate of cost-effectiveness ratio should be used to determine threshold for upper limit of confidence interval for CE ratio

Are All Ratios of Equal Value?

- Mortal, relatively incurable diseases vs. diseases that principally affect quality of life
 - Are acceptable ratios for former higher than for latter?
 NICE, appraisal committees can consider 'giving
 - greater weight to QALYs achieved in later stages of terminal diseases'" (Nature, 09/2009)
 - As more treatments become available and disease appears less incurable, does acceptable incremental ratio for new therapies begin to approach "standard" acceptable ratio?
- Small budgetary impact

Are All Ratios of Equal Value? (II)

- · Identifiable individuals
- Do individuals have a set of "social preferences" that differ from their "individual preferences"
 - \$1,000,000 to cure 100 blind invalids
 - \$1,000,000 to cure 100 blind healthy individuals
- · Compensation for risks imposed by society

Acceptability and Lower Left Quadrant?

- Economists usually treat ratios in upper right and lower left quadrants symmetrically
 - If won't spend more than \$50,000 per QALY saved for a more costly and more effective new therapy in upper right quadrant, then won't spend more than \$50,000 per death averted for more costly, more effective alternative therapy in lower left quadrant
 - i.e., adopt a less costly and less effective new therapy if its ratios of savings per QALY lost were greater than \$50,000 compared with alternative

Acceptability and Lower Left Quadrant? (II)

- Some have suggested that preferences for gains and losses of health are asymmetric
 - Common assumption: people need to be paid more to give up health than they are willing to pay to gain health (possibly an income effect)
- Such asymmetries can be incorporated into decision making for individual therapies, but complicates NMB calculation, construction of acceptability curves, and league-table decision making

Negative Cost-Effectiveness Ratios

- If point estimates for differences in costs and effects are of opposite signs (either increased costs and decreased effectiveness or decreased costs and increased effectiveness), resulting cost-effectiveness ratio will be negative
- Magnitude of negative point estimates for ratios in same quadrant does not provide information about relative preferability of these different therapies

Negative Ratios (II)

- When comparing two options and resulting costeffectiveness ratio (or CI of ratio) is negative, do not report negative value (because magnitude conveys little if any information)
 - Instead simply report that ratio represents that therapy is dominant/dominated
- If lower and upper limits of confidence interval (CI) for CE ratio are both negative, relative magnitude of the two limits provides information about whether or not CI includes Y axis of CE plane (return to this idea when we discuss sampling uncertainty for CERs)

Take Home Messages (I)

- Decision making using cost-effectiveness ratios requires attention to average and incremental cost-effectiveness ratios
- To make decisions using these ratios, compare them to:
 - A predefined standard (i.e., a threshold) against which they can be compared (e.g., \$50,000 per year of life saved might be considered largest acceptable ratio), or
 - Other accepted and rejected interventions (e.g., against league tables), or
 - (Rarely or never:) Utility curves trading off health and cost

Appendix: Method 5. INMB Selection

INMB Selection

- Can follow a modified version of method 1 to calculate incremental NMB (INMB)
- · Modifications include:
 - In step 3, calculate INMB rather than costeffectiveness ratios
 - Proceed to selection algorithm if:
 - All INMB are positive, OR
 - All INMB are negative, OR
 - First N_{i} therapies have positive INMB and remaining N_{j} therapies have negative INMB
 - Otherwise, continue to step 4

- · 5 strategies not in ascending order of either cost or effect
- · Revised so correctly ordered by effect
- Final recommendation unaffected by ranking variable

Ме	thod 5: Step :	2
iminate therapies th	nat are strongly	dominated
Treatment	Cost	YOLS
S1 Sig Q10	1290	17.378
S4 Sig Q5	1535	17.387
S3 C Q(10)	2030	17.396
S2 U+Sig, Q10	1810	17.402
	2035	17 407

- S2 strongly dominates S3
- Eliminate S3 from consideration for adoption

	Meth	od 5: S	Step 3		
 Compute INN outcomes i.e., INMB s5 	/IB for eac	ch remai Is S1 vs	ning adjace S4; S4 vs	ent pair S2; and	of S2 vs
Treatment	Cost	Δ	YOLS	Δ	INMB _{40k}
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	245	17.387	.009	115
S3 C, Q10	2030	495	17.396	.009	SDOM
S2 U+Sig, Q10	1810	275	17.402	.015	325
S5 U+Sig, Q5	2035	225	17.407	.005	-25

Method 5: Step 4

- Eliminate any obviously weakly dominated therapies for this or any other value of W
 - Obvious weak dominance: Lower ranked therapy with negative INMB followed by higher ranked therapy with positive INMB
- No obvious weak dominance for 40,000 (is for 20,000)

Treatment	Cost	Δ	YOLS	Δ	INMB _{40k}
S1 Sig Q10	1290		17.378		
S4 Sig Q5	1535	245	17.387	.009	115
S3 C, Q10	2030	495	17.396	.009	SDOM
S2 U+Sig, Q10	1810	275	17.402	.015	325
S5 U+Sig, Q5	2035	225	17.407	.005	-25
					000 MG

Nonobvious Weak Dominance

- May not calculate INMB for value of W for which weak dominance is obvious
 - In colorectal screening example evidence of weak dominance of S4 exists for values of W between approximately 19,000 and 27,000
 - E.g., for W=20,000 NMB for lower ranked S4, and higher rantked S2, and S5 equal –65, 25, and -125
- Fact that there was no obvious weak dominance for W=40,000 does not mean that S4 is not weakly dominated
 - Therapy that is weakly dominated for 1 W, is a weakly dominated therapy and should be removed from all analyses

Nonobvious Weak Dominance (2)

- Good news: Therapies which are weakly dominated but which have no obvious evidence of weak dominance will never be identified as best therapy even if not removed from analysis
- But will affect magnitudes of calculated INMB

 INMB for weakly dominated therapy should be added to INMB for next highest ranked therapy
- Alternate definition of weak dominance for INMB: There is no value of WTP for which therapy has greatest effectiveness among therapies with 0 or positive INMB

INMB and Weak Dominance

- As with CE algorithm:
 - Step 4: Drop weakly dominated therapies
 - In current example eliminate S4 and recalculate INMB for S2
 - Repeat until there are no therapies with negative INMB interspersed among positives
 - Proceed to selection algorithm

Result of Step 4. for 20K			
	∆cost	ΔYOLS	INMB, \$20k
S1 Sig, Q10	0	0	0
S4 Sig, Q5	WD	WD	WD
S2 U+Sig, Q10	520	.024	-40
S3 C,Q10	SD	SD	SD
S5 U+Sig,Q5	225	0.005	-125

- After elimination of S4, all INMB are 0 or negative
- Can proceed to selection algorithm
 - Because all strategies are less than or equal to 0, adopt S1

	INMB Recommendations			
	INMB,	INMB,	INMB,	INMB,
	10k	20K	40K	50K
S1 Sig, Q10	0	0	0	0
S4 Sig, Q5	-155	WD	115	205
S2 U+Sig, Q10	-125	-40	325	475
S3 C,Q10	SD	SD	SD	SD
S5 U+Sig,Q5	-175	-125	-25	25

May or may not assess value of W that allows identification of weak dominance

INMB Selection Algorithm

- If all INMB are 0 or positive, select therapy with largest
 effectiveness
 - e.g., when W=50,000, select S5
- If all INMB are less than or equal to 0, select therapy with greatest effectiveness among therapies with 0 INMB – e.g., when W=10,000, select S1
- If first N_i therapies have 0 or positive INMB and remaining N_j therapies have negative INMB, select therapy with greatest effectiveness among therapies with 0 or positive INMB
 - e.g., when W=40,000, select S2

Maximum WTP	Therapy
10.000	
10,000	31
20,000	S1
40,000	S2
50,000	S5

