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Sampling Uncertainty

• Traditionally, decision tree analysis has expressed 
uncertainty by use of one- and two-way sensitivity 
analysis

• More recently, Monte Carlo simulation has been used to 
evaluate more traditional measures of "sampling 
uncertainty“

– Sampling Uncertainty:  Degree to which results from a 
specific sample represent actual results in population 
from which sample was drawn

• One of several types of uncertainty

– e.g., doesn’t address biased sampling

Types of Sampling Uncertainty

• First order Monte Carlo simulation (FOMCS)

– If probability is 50%, then in each “trial” there is a 50% 
chance that event such as a side effect occurs 

• Second order Monte Carlo simulation (SOMCS)

– Also referred to as probabilistic analysis

– Uncertainty about whether “true” probability is 50% or 
48% or 52%

• In some trials, 48% chance of occurrence, in some 
50%, in some 52%
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First Order Monte Carlo Simulation

• HIV tree*

* hiv.2020.variables.trex

FOMCS Like a Pachinko Machine

Pachinko Machine Analogy

• Pins in machine represent chance nodes

• Balls (trials) represent individuals running through 
chance nodes

– Each ball represents an individual in a (clinical) trial

• Don’t represent (clinical) trials, each with many 
individuals

• Probability that individuals "bounce" one way or other at 
a chance node based on probability for node

– e.g., if pHIV equals 0.003, then on average 3 in 1000 
individuals will bounce into HIV "bin" and 997 in 1000 
individuals will bounce into No HIV "bin", but any one 
individual ends up in either HIV or No HIV bin
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HIV Pachinko Machine
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Movement in First Order Monte Carlo Simulation

• FOMCS models movement of multiple individuals 
through tree using results of random number generation 
(e.g., between 0 and 1) and probabilities

• Path through tree based on probabilities

– No Prophylaxis:  final outcome based on 1 random 
number

– Prophylaxis: final outcome based on two random 
numbers

No Prophylaxis Probability Ranges

No Yes

Random Draw # 1

HIV 0.0 to <0.997 0.997 to 1.0
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Person Random Draw #1 Outcome

1 0.473 No HIV

2 0.976 No HIV

3 0.364 No HIV

4 0.998 HIV

5 0.279 No HIV

Sample Run of 5 People Through No Prophylaxis Arm

Prophylaxis Probability Ranges

No Yes

Random Draw # 1

Side Effects
0.0 to <0.5 0.5 to 1.0

Random Draw # 2

HIV 0.0 to <0.999976 0.999976 to 1.0

Person
Random 
Draw #1

Random 
Draw #2 Outcome

1 0.25 0.759 No SE, No HIV

2 0.33 0.99998 No SE, HIV

3 0.76 0.251 SE, No HIV

4 0.40 0.333 No SE, No HIV

5 0.83 0.657 Se, No HIV

Sample Run of 5 People Through Prophylaxis Arm
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Running a First Order Monte Carlo Simulation

• TreeAge refers to first order Monte Carlo simulation as 
"Trials (Microsimulation)"

\Analysis\Monte Carlo Simulation\Trials (Microsimulation)

• Identify number of trials you want TreeAge to run 
(number of individuals run through tree)

– Monte Carlo simulation does not give exact answers 
to decision problem

– Number of trials should be sufficiently large that 
central limit theorem works

(In what follows:) Number of trials:  50,000

Seeding Random Number Generator

• If you want to be able to reproduce your results, set 
"seed" for random number generator, e.g.,

\Seeding\Seed random number generator:  1

• Begin

Roll Back (Numbers)
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First Order Monte Carlo Simulation Results, Utiles

• Copy to Clipboard button

No Prophylaxis Prophylaxis

Mean 99.7239 97.4348

Std Devi… 5.0839 2.2305

Minimum 6.1000 95.3000

2.5% 100.000 95.3000

10% 100.000 95.3000

Median 100.000 95.3000

90% 100.000 99.6000

97.5% 100.000 99.6000

Maximum 100.000 99.6000

hiv.2020.variables.trex; N = 50000; seed = 1

First Order Monte Carlo Simulation Results, Cost

• Copy to Clipboard button

No Prophylaxis Prophylaxis

Mean 959.91 1063.33

Std Dev 17,677.36 2065.53

Minimum 0 1000

2.5% 0 1000

10% 0 1000

Median 0 1100

90% 0 1100

97.5% 0 1100

Maximum 362500 327,600

hiv.2020.variables.trex; N = 50000; seed = 1

FOMCS Standard Deviations

• First order Monte Carlo simulation adds uncertainty into 
model (we can estimate both means and variances)

• Uncertainty does not come from parameter estimates 
themselves

– Point estimates for pHIV, cHIV, dHIV assumed to be 
known with certainty

• Reported standard deviations result from “random walks” 
– pachinko ball “bounces” – that leave people in different 
terminal bins, each with different payoffs

– Referred to as “binomial variation”

• FOMCS SDs not sufficient for interval estimation or 
statistical tests

– Can’t divide reported SD by N½ to obtain SE
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Standard Deviation vs Standard Errors

• As noted by Altman and Bland:

– Standard deviation of sample used to estimate 
variability in population from which sample was drawn

• For all distributions (normal or otherwise) ~95% of 
observations usually have values that are within 2 
standard deviations of mean

– Generally estimate sample mean to learn about mean 
in population from which sample was drawn

• Sample mean varies from sample to sample and 
variability is described by sampling distribution

• Standard deviation of sampling distribution is 
called standard error

– Confidence intervals / inferences derived using 
means and SEs, not means and SDs

Equations (Continuous Variables)

Reason why sample size 
matters

 i i

2 2
Diff12 1 2

2 2
CorrDiff12 1 2

 x  - x
Var = 

N - 1

SD = Var

SD
SE = 

N

SE  = SE  + SE

SE  = SE  + SE  - 2 COV  

SD Vs SE, Age

20

21 Mean 25.75

25 SD 3.615443

26 N^0.5 2.8284271

27 SE 1.2782
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SD vs SE (2)

• Summary of data from 1000 normally distributed 
observations with mean 10,000 and SD 1000

Variable |  Obs Mean  Std. Dev.      Min       Max

---------+------------------------------------------

cost | 1000  10000      1000  7183.365  12988.41

• Calculated SE, 1000 / 10000.5 = 31.62

• Result of bootstrap of mean of distribution with 1000 
observations with a mean of 10,000 and SD of 1000

Variable |  Obs Mean  Std. Dev.      Min       Max

---------+------------------------------------------

mcost | 1000  9999.67    31.72  9882.69  10108.95

Why Do We Need to Know?

• TreeAge doesn’t know whether data represent 
individuals or means of groups of individuals, so it 
doesn’t know if it is calculating SDs or SEs

– Stata, also has no idea if a variable contains 
observations of individuals (“summarize” command 
yields mean and SD) OR

– if it contains observations of means (“summarize” 
command yields mean of means and SE)

• TreeAge doesn’t calculate parametric p-values or CI for 
outcomes of interest

• If we provide TreeAge with correct data, it yields results 
WE CAN USE to calculate p-values and CI

• Thus need to know correct data to enter into program 
and how to use results that come out

Sampling Uncertainty

• Sampling uncertainty includes more than variability due 
to coin flip (binomial variation)

– Can’t simply divide SDs by N½ and interpret results as 
SEs

• Must take into account that had probabilities (or mean 
costs or mean QALYs) been derived from a different 
sample, point estimates would have differed

– Sankey reported that pHIV equaled 0.28% in CDC 
Prospective Cohort Study and when combined with 
22 smaller studies equaled 0.32%
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• SOMCS incorporates sampling uncertainty by using 
distributions rather than point estimates to define 
variables

– E.g., drawing from distribution of probability of pHIV
with a mean of 0.003 rather than using point estimate 
of .003

• Implication: Allows statistical statements such as:

̶ "No prophylaxis yields significantly greater utility than 
does prophylaxis“ OR

̶ “Utility for no prophylaxis and prophylaxis are not 
significantly different from one another"

Second Order Monte Carlo Simulation: Addressing 
Sampling Uncertainty

• Second-order (parameter uncertainty):  Mean and 
standard error

– Sample means/proportions from each distribution 
drawn once per trial; roll back to obtain expected 
values for trial

• pdHIV, pdSE, reduce, cdHIV, cdDrug, cdSE, 
ddHIV, ddDrug, ddSE

• If all data not derived from a single dataset (e.g., registry 
or trial), may lose some of correlation structure in 
sampling

– Software allows drawing from correlated normal 
distributions

Second Order Monte Carlo Simulation: Addressing 
Sampling Uncertainty (2)

Example: 4 Random Draws from 9 Distributions

Draw #1 Draw #2 Draw #3 Draw #4

pHIV .0036 .0022 .0037 .0030

pSE .5048 .5031 .5020 .4925

reduce .0065 .0009 .0099 .0095

cHIV 345,751 340,751 320,707 328,625

cDrug 1018 995 996 1186

cSE 81 73 96.7 104

dHIV 95.00 93.49 93.79 92.60

dDrug .145 .491 -.578 1.948

dSE 3.946 2.566 3.573 1.986

Hivse.2020.trex; N = 10000; seed = 1

Data available from “All Data Report”
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Expected Values from 4 Roll Backs

No Prophylaxis Prophylaxis

Cost Utiles Cost Utiles

Draw #1 1257 99.6544 1067 97.8604

Draw #2 746 99.7953 1032 98.2176

Draw #3 1201 99.6486 1056 98.7817

Draw #4 981 99.7235 1247 97.0709

Data available from:

\Analysis\monte carlo simulation\sampling (probabilistic)\
begin\All Data Report

hivse.2020.trex; N = 10000; seed = 1

Distributions

Probabilities (2 outcomes) (avoid 
distributions that can yield probabilities 
<0 and >1)

Beta

Probabilities (3+ outcomes) (avoid 
distributions that can yield probabilities 
<0 and >1) AND those that don’t sum to 
1.0

Dirichlet

Relative Risks (odds ratios) Log normal

Continuous Variables Normal;

Gamma;

Log normal

Primary Changes in Defining Trees Using TreeAge

• Define probabilities and pay-offs (by use of distributions)

• Analyze tree by use of Monte Carlo Simulation

– Simple roll back (generally) gives point estimate for 
tree, by use of mean values for each distribution used 
in tree

• Because some point estimates represent medians rather 
than means (e.g., OR and RR), point estimate from roll 
back can differ from point estimate from Monte Carlo
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• Step 1.   Construct your tree

• Step 2.   Define your probability distributions

– Select a distribution for variable of interest (e.g., for 
pdHIV, distribution that defines pHIV

– Define distribution (e.g., pdHIV)

– Label distribution (e.g., Probability of HIV)

– Add variable that is defined by distribution (e.g., pHIV) 
where ever it appears in tree

– Assign distribution to variable (e.g., assign pdHIV to 
pHIV)

Steps in Performing Probabilistic Cost-
Effectiveness Analysis

Steps in Performing Probabilistic Sensitivity 
Analysis (cont.)

• Step 3.   Define your payoff distributions

• Step 4.   Analyze "stochastic" tree

• Step 5.   Calculate a significance test or confidence 
interval and perform sensitivity analysis

Getting Started in TreeAge

• Step 1. Construct your tree

HIV

No HIV
No Proph

HIV

No HIV
Side Effects

HIV

No HIV
No Side Effects

Proph
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Step 2. Define Your Probability Distributions

• 2 probabilities represented by beta distributions

pdHIV 20 / 6202 CDC Prospective 
Cohort Study

pdSE 5892 / 11,784 CDC Surveillance 
Hospitalization Study

Defining pdHIV

• Open distribution window (e.g., \values\distributions view 
OR \views\distributions)

• Create new distribution (green cross)

• Identify:

– type of distribution (beta)

– sampling rate (resample per EV)

– name of distribution (pdHIV)

– description of distribution (Probability distribution, 
HIV)

– distribution parameters: for Beta distribution use real 
numbered parameters

• Total observations = 6202;                                    
α= # successes = 20; ß = # failures = 6182
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Create pHIV Variable and Set Equal to pdHIV

• Open Variable Properties window (e.g., \values\variable 
properties view OR \views\variable properties)

• Create new variable (green cross):  opens Add/Change 
Variable window

• Identify:

– name of variable (pHIV)

– description of variable (Probability of HIV)

– show definitions in tree

– (do NOT define numerically at root)

• Close Add/Change Variable window

• Add pdHIV to pHIV Root Definition in Variable Properties 
window

37

38

39



14

Step 2d. Add pHIV to Tree

Define pdSE; Assign It to pSE; Add to Tree

• Use beta distribution and “Real-numbered parameters” 
option (5892 / 5892) to define pdSE

• Identify value for pSE

HIV

pHIV
No HIV

#

No Proph

HIV

pHIV
No HIV

#

Side Effects

pSE

HIV

pHIV
No HIV

#

No Side Effects

#

Proph

pHIV=pdHIV
pSE=pdSE

Relative Risk, HIV (reduce)

• Hypothetical experimental data (virtual sample size)

• Relative risk: 0.000024/.003140 = .007643

• Relative risk modeled as a log normal distribution 
(log(RR) and SE(log(RR))

Prophylaxis No Prophylaxis

HIV .6 (a) 72 (b)

No HIV 24,999.3 (c) 22,857 (d)

Total 24,999.9 (a + c) 22,929 (b + d)
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Log Relative Risk

• Log(RR) and SE Log(RR)

• RR distributed log normal (2 parameters)

– µ (ln RR):

ln(.6)+ln(22929)-(ln(72)+ln(24999.9)) = -4.8740

– sigma (se ln(RR)):

((1/.6)+(1/72)-((1/24999.9)+(1/22929)))^.5 = 1.2963302

ln(RR) = ln(a) + ln(b+d) - ln(b) - ln(a+c)

1 1 1 1
se[ln(RR)] =  +  -  - 

a b a+c b+d

Log Relative Risk (2)

• Point estimate of relative risk represents median of RR

• In many situations, median RR ≈ mean RR

• Use of log normal distribution for THIS RR provides 
example where median (0.0076) ≠ mean (0.0184)

– Difference may be exacerbated by use of 0.6 for 
HIV|prophylaxis cell, but mean is still twice median if 
we substitute 1.0 for 0.6

– Tends to occur when probabilities are close to 0, 
distribution is truncated, and log normal not a good 
representation of distribution of RR

• In current example, simulation suggests square root or 
normal distributions are better fits to data

Log Relative Risk (3)

• When using a log normal to represent RR, results of 
rollbacks and Monte Carlo simulations reflect MEAN of 
RR, not median

• Judge extent of bias from use of log normal distribution 
by comparing results to rollback that substitutes numeric 
values for means and medians for distributions
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Define Relative Risk Distribution

• Open distribution window (e.g., \values\distributions 
view)

• Create new distribution (green cross)

• Identify:

– type of distribution (log normal)

– name of distribution (pdRR)

– description of distribution (relative risk, HIV given 
drug)

– distribution parameters

• µ = -4.8740

• sigma = 1.2963302

– sampling rate (resample per EV)

Create RR Variable and Set Equal to pdRR

• Open Variable Properties window (e.g., \values\variable 
properties view OR \views\variable properties)

• Create new variable (green cross):  opens Add/Change 
Variable window

• Identify:

– name of variable (RR)

– description of variable (Relative risk, HIV)

– show definitions in tree

– do NOT define numerically at root

• Close Add/Change Variable window

• Add pdRR to Root Definition of RR in Variable Properties 
window
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Add Relative Risk (RR) to Tree

Distribution of LR VS OR
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(Recap) Log Relative Risk

• Log(RR) and SE Log(RR)

• RR distributed log normal (2 parameters)

– µ (ln RR):

ln(.6)+ln(22929)-(ln(72)+ln(24999.9)) = -4.8740

– sigma (se ln(RR)):

((1/.6)+(1/72)-((1/24999.9)+(1/22929)))^.5 = 1.2963302

ln(RR) = ln(a) + ln(b+d) - ln(b) - ln(a+c)

1 1 1 1
se[ln(RR)] =  +  -  - 

a b a+c b+d

Log Odds Ratio

• Log(OR) and SE Log(OR)

• OR distributed log normal (2 parameters)

– µ (ln OR):

ln(0.6)+ln(22857)-(ln(72)+ln(24999.3)) = -4.8771

– sigma (se ln(OR)):

((1/0.6)+(1/72)+(1/24999.3)+(1/22857))^.5 = 1.2963947

• NOTE: As with RR, mean and median differ

ln(OR) = ln(a) + ln(d) - ln(b) - ln(c)

1 1 1 1
se[ln(OR)] =  +  +  + 

a b c d

Using Odds Ratios in Trees

• Probability after intervention with a given OR

• Equivalent formula using built-in Treeage functions:

– ProbToOdds

– OddsToProb

e.g., pint = OddsToProb(ORHIV * ProbToOdds(pHIV))




HIV HIV
int

HIV HIV HIV

OR   p
p  = 

(OR   p ) + (1 - p )
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Step 3. Define Payoff Distributions

• 3 normal distributions for cost (simplification)

• 3 normal distributions for utiles

• Use mean and SE where program asks for mean and 
SD, in part because TreeAge doesn't ask for N, and thus 
can't calculate an SE if we enter an SD

Define Payoffs

* N = 14 respondents

Cost Disutility

Mean SE Mean SE *

HIV 326,500 32,650 93.9 1.566

Drug 1000 100 0.4 0.918

SE 100 15 4.3 1.203

Define cHIV Distribution

• Open distribution window (e.g., \values\distributions 
view)

• Create new distribution (green cross)

• Identify:

– type of distribution (normal)

– name of distribution (cdHIV)

– description of distribution (cost distribution, HIV)

– distribution parameters (mean = 326,500; std dev = 
32,650)

– sampling rate (resample per EV)
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Add cHIV to Tree

Assign cdHIV to cHIV
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Add Remaining Cost Payoffs

Concerns About Normal Distributions

(Not shared by me)

• Even though we use distributions of means (thus central 
limit theorem applies), some worry that raw costs aren’t 
typically normally distributed

• One typical response is to represent cost data as 
distributed gamma

– Gamma distribution defined by two parameters, alpha
and lambda

Gamma Distributions for Cost
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Treeage Parameterization of Gamma Distributions

• e.g.,

– cdHIV = 326,500; 32,650:  gamma = 100; .00030628

– cdDrug = 1000; 100:  gamma = 100; .1

– cdSE = 100; 15:  gamma = 44.4444, .4444

2
RS

2
RS

RS
2

RS

where RS = raw or untransformed scale

mean
Alpha = 

s

mean
Lamba = 

s

• Gamma defined by a shape and a scale parameter

• At least 3 parameterizations exist, and each uses a 
different notation

– E.g., K and Θ (theta), α and inverse scale parameter 
β, and K and μ=α/β

• Briggs et al. warn that TreeAge and his book (chapter in 
readings) don’t use same parameterization

– Treeage uses α and β which it refers to as α and λ

• In simulation can be shown that TreeAge
parameterization returns correct mean, sd or se, and 
skewness (2/α 0.5 ) on raw/untransformed scale

– Less clear about Kurtosis (6/α) (but random 
generation of gamma variables not always valid for 
small values of α)

More General Gamma Distribution Parameterization
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Log Normal Distributions for Cost

• A second typical response to concern that raw costs 
aren’t typically normally distributed is to represent them 
as distributed log normal

• Log normal distribution defined by 2 parameters, μ
(mean of logs) and sigma (error term of logs)

Parameterization of Log Normal Distribution

• cdHIV = 326,500; 32,650:  lognorm = 12.69121 .09975135

• cdDrug = 1000; 100:  lognorm = 6.9027801; .09975135

• cdSE = 100; 15:  lognorm = 4.5940449, .14916638

 

RS

2
RS

0.52 2
RS RS

0.5
2

RS
2

where RS = raw or untransformed scale

mean
 = ln

mean  + s

s
sigma = ln 1 + 

mean


 
 
 
 

  
     

TreeAge Parameterization of Log Normal Distribution

• Can be shown in simulation that TreeAge “median” 
parameterization yields identical parameters as “mean/s” 
parameterization

 RS

RS

RS

where RS = raw or untransformed scale (TreeAge manual)

 = ln median

mean
 = 2 ln

median
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TreeAge Log Normal Distribution Parameterization

• Limitation: if obtaining cost parameters from published 
sources, median is rarely reported

• Yes, can derive raw scale median from raw scale 
mean/s

• But if already have mean/s why go through extra steps to 
use median?

 
2

RS
RS 0.52 2

RS RS

where RS = raw or untransformed scale (TreeAge manual)

mean
median  = 

mean  + s

Monte Carlo SEs: Normal, Gamma, and Log         
Normal Cost Distributions

• Means of 5 PSAs for each set of distributions, 10,000 
draws per PSA, seeds of 1, 2, 3, 4, and 5

• Central limit theorem: distributions of means derived 
from variables with normal, gamma, and log normal 
distributions are themselves normal

Normal Gamma Log Normal

No Prophylaxis 258.99 258.98 258.99

Prophylaxis 108.72 110.11 108.16

Difference 277.25 277.12 277.24

Hivse.2020.trex; HIVSE.2020gamma.trex; HIVSE.2020lognorm.trex
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Gamma Distributions in Simulation Nearly Symetric

• Changed mean and SE of cost of side effects to 10,000 
and 15,800 respectively

– Made gamma distribution substantially more skewed 
and kurtotic

• Means, differences in means, and SE of differences 
derived from normal and gamma distributions remained 
similar

• Averaged data from 10 PSAs for normal and gamma distributions,        
10,000 draws per PSA, seeds of 1 to 10

No Proph Proph Diff SE

Normal 1054 6032 4979 7909

Gamma 1052 6021 4969 7918

Create Disutility Distributions and Add Disutility 
Payoffs to Tree

• As with costs, even though we use distributions of 
means (thus central limit theorem applies), some worry 
that raw utility scores aren’t normally distributed

• Again, one response is to represent cost data as 
distributed gamma

• But Gamma (and log normal) distributions are for right-
skewed data

• QALY scores typically left skewed rather than right 
skewed

Are Disutility Scores Normally Distributed?

73

74

75



26

Gamma Distributions and Left-Skewed Data

• To define gamma distributions for left-skewed data, we 
usually subtract scores from highest possible value for 
distribution (e.g., if QALY score varies between 0 and 1, 
we subtract all scores from 1)

– Represent disutility scores

• Define means and SD of disutility scores and use 
formulas for gamma distribution

• Without adjustment, result represents sum of disutility 
scores and thus requires retransformation in tree

– Payoff = 100-disutility score (if 0-100 scale) OR

– Payoff = 1-disutility score (if 0-1 scale)

Analyze the Tree

Roll Back (Numbers)

hiv.2020.variables.trex
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Roll Back Tree w/Distributions (Point Estimates) *

* Small differences between stated probabilities and 
distribution parameters lead to observed differences in 
expected values

hivse.2020.trex

Sampling

• More like multiple "roll backs" than like pachinko 
machine

• For each roll back typically draw from each distribution to 
obtain a point estimate for each of probability and 
outcome parameter

– Able to limit number of distributions from which draws 
are made

• Generally useful for identifying how much 
variability comes from each distribution

Sampling in TreeAge

• \Analysis \ Monte Carlo Simulation \ Sampling 
(Probabilistic Sensitivity....)

• Identify number of samples (e.g., 5000)

• (optional) Seeding

– Check “Seed random number generator box” and 
select seed (counting number)

• (optional) identify Distributions to be sampled (typically 
“sample all”)

• Begin
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Two-Dimensional (Sampling+trials)

• Combines sampling and trials

– For each sample

• Draw point estimates for probabilities and 
outcomes as in sampling

• Run multiple people through "pachinko" machine

• For decision trees, not clear if there are any advantages 
over "Sampling" alone

• For Markov models, may allow us to probabilistically 
account for "history"

“Sampling” Monte Carlo C-E Statistics

No Prophylaxis Prophylaxis

Cost Utiles Cost Utiles

Mean 1049 99.70 1067 97.45

SD * 253 0.07 108 1.09

Min 368 99.36 722 93.94

2.5% 626 99.56 861 95.30

10% 747 99.61 934 96.04

Median 1025 99.70 1064 97.45

90% 1382 99.78 1200 98.62

97.5% 1611 99.81 1285 99..55

Max 2430 99.88 1966 101.63

* Reported Std Dev. is actually S.E.
hivse.2020.trex; N = 5000; seed = 1

(Selected) Monte Carlo Simulation Sampling Results

• Actions

– Data

• Summary report: means, ses, etc. of costs, 
effects, NMB and probability distributions

• All Data Report: Point estimates of means, ses, 
etc. of cost, effects,and probability distributions by 
iteration

• All Data Report Export: Exports All Data Report

– Other

• Expected Values: 1st 4 columns of Summary report

• Distributions by name and order: Other columns
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Selected Monte Carlo Simulation Sampling Results (2)

• Actions (Continued)

– PSA Outputs

• Acceptability Curve: Draws acceptability curves and 
offers text report of fraction of each therapies 
iterations that are acceptable for values of WTP

Selected Monte Carlo Simulation Sampling Results (3)

• Actions (Continued)

– PSA Outputs

• Acceptability at WTP: Creates bar chart of fraction 
acceptable for a specified WTP

hivse.2020.trex; N = 5000; seed = 1

Acceptability at WTP

• Gamma

• Log Normal

hivse.2020gamma.trex; N = 5000; seed = 1
Hivse2020lognorm.trex; N = 5000; seed =1
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Selected Monte Carlo Simulation Sampling Results (4)

• Actions (Continued)

– PSA Outputs

• CE Scatter plot: Graphs and reports distribution of 
each therapy’s C/Q points (by iteration) on cost-
effectiveness plane [UNHELPFUL]

hivse.2020.trex; N = 5000; seed = 1

Selected Monte Carlo Simulation Sampling Results (5)

• Actions (Continued)

– ICER Scatter Plot: Graphs ΔC/ΔQ points (by iteration) 
on cost-effectiveness plane (Classic cost-effect-
tiveness plane); provides text file of detailed results 
AND reports fractions of point in 6 regions on plane 

hivse.2020.trex; N = 5000; seed = 1

Good and Bad Value

Appropriate W for utiles?
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ICE Report

• \ICE Scatterplot\Proph v. No Proph\ICE Report 
(WTP=50000)

QUAD-
RANT

INCR
EFF

INCR
COST FREQ

PRO-
PORTION

C1 IV IE>0 IC<0 Superior 48 0.0096

C2 I IE>0 IC>0 ICER<50k 42 0.0084

C3 III IE<0 IC<0 ICER>50k 2 0.0004

C4 I IE>0 IC>0 ICER>50k 1 0.0002

C5 III IE<0 IC<0 ICER<50k 2154 0.4308

C6 II IE<0 IC>0 Inferior 2753 0.5506

Indiff origin IE=0 IC=0 0/0 0 0

hivse.2020.trex; N = 5000; seed = 1

Monte Carlo Simulation Sampling Results (6)

• Actions (Continued)

– ICER Distributions: Histogram of distribution of ICERs 
with stats report that assumes ICER is a continuous 
variable with a mean and SD (SE) [IT’S NOT]

STRATEGY ATTRIBUTE STATISTIC VALUE

Strategy 2 v. 1 ICER Mean 5

Strategy 2 v. 1 ICER SD (SE) * 1958

Strategy 2 v. 1 ICER 2.5% -477

Strategy 2 v. 1 ICER Median -18

Strategy 2 v. 1 ICER 97.5% 502

* SE FOR ICER undefined; 95% CI ≠ +/- 1.96*SE

Monte Carlo Simulation Sampling Results (6)

• Actions (Continued)

– CE Outputs

• CE Graph: Graphs each therapy’s cost/effect pair 
[Same Unhelpful Graph As CE Scatter plot; 
Additional Text Report identical to CE Rankings 
below]

• CE Rankings: Provides cost-effectiveness “Text 
Report” with incremental and single treatment ratios 
[Classic cost-effectiveness table (except for 
individual therapy c/e ratios)]
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Cost-Effectiveness Report (Rollback With Numbers)

• \Cost Effectiveness\Text Report

Strategy Cost Incr Cost Eff Incr Eff Incr CE Dominance

No Proph 980 -- 99.7183 0 0

Proph 1058 78 97.4477 -2.2706 -35 Dominated

Monte Carlo Sampling Cost-Effectiveness Report

• \CEA Outputs\CE Rankings *

* Also \CEA Outputs\CE Graph\Text Report

Strategy Cost Incr Cost Eff Incr Eff Incr CE Dominance

No Proph 1049.22 -- 99.6980 -- --

Proph 1066.88 17.66 97.4521 -2.2459 -8 Dominated

Monte Carlo Simulation Sampling Results (7)

• Actions (Continued)

– Incremental INMB and WTP: Draws NMB curve 
reporting WTP on X axis and NMB on Y axis
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Monte Carlo Simulation Sampling Results (8)

• Actions (Continued)

– Histograms

• Output Distributions

– Cost, incremental cost, effect, incremental effect, 
NMB

• Incremental Cost: Histogram and stats report 
that provides statistics for ΔC [Very 
important for reporting sampling 
uncertainty]

• Incremental Effect: same as above for ΔE

Distribution of Incremental Cost

\Histograms\Output Distributions\Incremental Cost\ Proph
v. No Proph\Stats Report

STRATEGY ATTRIBUTE STATISTIC VALUE

Strategy 2 v. 1 Incr Cost Mean 17.66

Strategy 2 v. 1 Incr Cost SD (SE) 272

Strategy 2 v. 1 Incr Cost Min -1372

Strategy 2 v. 1 Incr Cost 2.5% -557

Strategy 2 v. 1 Incr Cost Median 38

Strategy 2 v. 1 Incr Cost 97.5% 491

Strategy 2 v. 1 Incr Cost Max 856

Incremental Effect

\Histograms\Output Distributions\Incremental Eff\ Proph v. 
No Proph\Stats Report

STRATEGY ATTRIBUTE STATISTIC VALUE

Strategy 2 v. 1 Incr Eff Mean -2.25

Strategy 2 v. 1 Incr Eff SD (SE) 1.09

Strategy 2 v. 1 Incr Eff Min -5.80

Strategy 2 v. 1 Incr Eff 2.5% -4.40

Strategy 2 v. 1 Incr Eff Median -2.24

Strategy 2 v. 1 Incr Eff 97.5% -0.13

Strategy 2 v. 1 Incr Eff Max 1.99
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Incrementals Cost Utiles

Mean 17.66 -2.25

SD (SE) 272 1.09

Minimum -1372 -5.80

2.5% -557 -4.40

Median 38 -2.24

97.5% 491 -0.13

Maximum 856 1.99

Step 5. Nonparametric Tests of Significance (p<.05)

• For cost, nonparametric 95% CI includes 0; for 
Utiles both limits are negative

• Statistical significance?

Incrementals Cost Utiles

Mean 17.66 -2.25

SD (SE) 272 1.09

T statistic 0.06 2.06

P-value * 0.95 0.04

Step 5. Parametric Tests of Significance

* 2*(1-normal(17.66/272)); 2*ttail(1000,19.85/276)

2*(1-normal(2.25/1.109)); 2*ttail(1000,2.26/1.11)

T-test calculations assume 1000 DOF

Cost-Effectiveness Ratios

Point estimate:  No prophylaxis dominates prophylaxis

95% Lower limit:  No prophylaxis dominates prophylaxis

95% Upper limit:  No prophylaxis costs more and does 
more, and it’s c/utile ratio equals $679 *

* Based on ΔC=17.66; Sec= 272; ΔU=-2.25; Seq=1.09; and  
rho=0
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What are Major Sources Of Uncertainty?

• Goal of quantifying uncertainty is to provide audience 
with a measure of confidence about results

• Audience will be misled (i.e., overly confident) if we 
present measure of uncertainty that is smaller than it 
should be

• Sources of shrinkage in SEs include:

– Excessively large correlations that shrink SEs

– Failure to address potential bias?

– Failure to address modeling uncertainty

Excessively Large Correlations

• Results of trees (e.g., costs and effects) generally will 
show correlations, but unless we explicitly model 
correlations -- which generally isn’t done -- observed 
correlations may not be of right magnitudes

– We don’t see it in this example, but in some 
instances, SE of difference is much smaller than 
(SE0

2 + SE1
2)0.5

– If we observe this shrinkage, should probably use 
different distributions for each arm of tree

Focusing on Sampling Uncertainty

• When we borrow data from multiple sources and 
combine them, we assume:

– Point estimate is appropriate (unbiased)

– Sampling error observed in another setting is a good 
measure of error in problem under consideration

• Accounting for sampling uncertainty doesn’t address 
whether we are using a biased estimator

• Not clear that measure of sampling uncertainty from 
another population/clinical problem will be appropriate 
for current population/clinical problem
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Major Sources of Uncertainty (cont.)

• Possibly most important:  We have not accounted for 
"Model" uncertainty
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