Analysis of Patient-Level Cost Data (With QALY Analysis Appendix) Analysis of Patient-Level Cost Data

(With QALY Analysis Appendix)
 $\begin{array}{r}\n\text{Henry Glick}\n\hline\n\text{Epi} & \text{Epi} & \text{S50}\n\end{array}$

April 1, 2020

April 1, 2020
 $\begin{array}{r}\n\text{Outline}\n\hline\n\text{Outline}\n\end{array}$
 $\begin{array}{r}\n\text{Outline}\n\end{array}$
 $\begin{array}{r}\n\$ malysis of Patient-Level Cost Data

(With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

Outline

Divisional parameter for CEA

Prilevant parameter for CEA

— Cost data 101

— Friespose to vio malysis of Patient-Level Cost Data

(With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

April 1, 2020

Coultine

Cost data 101

Contained analysis

Coultine

Cost data 101

Cost data 101

T malysis of Patient-Level Cost Data

(With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

Outline

Division and the male of CEA

Photographic mannels for CEA

The Cost data 101

Primer on log c malysis of Patient-Level Cost Data

(With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

April 1, 2020

Dilvariate analysis

Divariate analysis

Divariate analysis

Discusse to violation of malysis of Patient-Level Cost Data

(With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

The Cost data 101

Philoy relevant parameter for CEA

- Policy relevant parameter for CEA

- Policy rel (With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

April 1, 2020

Outline

Division different statistical tests lead to the Contex data 101

Prince on log cost

Prince on log cost

Finner on log cost

Comm

Henry Glick

Epi 550

April 1, 2020

1

Outline

- -
	-
	-
	-
	-
- inferences? Henry Glick

Epi 550

April 1, 2020

April 1, 2020

• Univariate analysis

Cuttline

• Policy relevant parameter for CEA

– Cost data 101

– T-rests

– Cost data 101

– Primer on log cost

– Williterathes analysis

– Henry Glick

Epi 550

April 1, 2020

April 1, 2020

Outline

Dinvariate analysis

Dinvariate analysis

Constitution of increases

T-tests

— Feeponse to violation of normality

There no log cost violation of normality

The Henry Glick

Epi 550

April 1, 2020

April 1, 2020

Outline

Divisoriate analysis

Divisoriate analysis

Divisoriate analysis

There is no located to the CEA

There is the visit of community

Divisor different statistical
	-
	-
	-

2 and 2

Policy Relevant Parameter for CEA

- Univariate analysis

 Delivy relevant parameter for CEA

 Clestons contain of a constant parameter for CEA

 Clestons considered the cost-

 Primer on log cost

 Wultivariable analysis

 Common techniques

 Gener from any policy gain enough to be able to compensate losers and still be better off themselves • Univariate analysis

– Policy relevant parameter for CEA

– Cest data 101

– T-tests

– Response to violation of normality

– Primer on log ocost

– Why do different statistical tests lead to different

• Multivariable a • Dinvariate analysis

— Policy relevant parameter for CEA

— Cost data 101

— T-less

— Response to violation of normality

— Primer on log cost

— Willtivariable analysis

— Multivariable analysis

— Common techniques

—
-
- lose, or cost, and how much winners win, or benefit

Policy Relevant Parameter for CEA (2)

- provides unbiased estimate of population mean * N
- Policy Relevant Parameter for CEA (2)
• Whether or not data are skewed, sample mean * N
provides unbiased estimate of population mean * N
– Represents unbiased estimate of gains and losses
• When data are skewed, Media Policy Relevant Parameter for CEA (2)

Whether or not data are skewed, sample mean * N

provides unbiased estimate of population mean * N

— Represents unbiased estimate of gains and losses

Mhen data are skewed, Median * • Policy Relevant Parameter for CEA (2)
• Whether or not data are skewed, sample mean * N
provides unbiased estimate of opulation mean * N
• Represents unbiased estimate of gains and losses
• When data are skewed, Median * gains and losses • Policy Relevant Parameter for CEA (2)
• Whether or not data are skewed, sample mean [∗] N

στονίσε unbiased estimate of policition mean ∗ N

– Represents unbiased estimate of gains and losses

gains and losses

then da

Initial advantage: sample mean (aka arithmetic mean)

4

Policy Relevant Parameter for CEA (3)

distribution of the median • Policy Relevant Parameter for CEA (3)
• Distribution of mean generally more variable than
distribution of the median
• Potential advantage: median
• Commonly right-skewed (i.e., long, heavy, right tails)
• Data tand to • Distribution of mean generally more variable than
• Distribution of the median
• Brotential advantage: median
• Potential advantage: median
• Cost Data 101
• Commonly right-skewed (i.e., long, heavy, right tails)
• Can

Potential advantage: median

$5₅$

Cost Data 101

- -
	-
	- services than less severe cases
- Policy Relevant Parameter for CEA (3)

Sistribution of mean enerally more variable than

otential advantage: median

Cost Data 101

Cost Data 101

Costs, but not negative costs, but not negative costs, but not negative cos Vertikution of mean generally more variable than

listribution of the median

votential advantage: median

Cost Data 101

Cost Data 101

Cost Data 101

Cost Data inclusions:

Can have 0 costs, but not negative costs

case Formation of the mean and a very experimental advantage: median and the state of the state of the skewed (see, long, heavy, right tails)
Data tend to be skewed (see, long, heavy, right tails)
Data tend to be skewed vecause small number of patients
	- France Cost Data 101

	Cost Data 101

	Homonly right-skewed (i.e., long, heavy, right tails)

	a tend to be skewed because:

	can have 0 costs, but not negative costs

	ervices than less severe cases

	ervices than less severe c proportion of health care costs

 $-$ Distributions with long, heavy, right tails will have larger sample means than medians

* p = 0.003 and 0.000 for nonnormality of groups 0 and 1, respectively

10

"If the data are skewed, the mean doesn't tell us anything"

Do you agree?

11

Current wisdom about using parametric tests of means in cases where data are skewed??

??? Don't analyze or report means ??? ??? Analyze and report medians instead ???

B

13

What's rationale for analyzing and reporting medians instead of means??

14

Rationales for Analyzing and Reporting Medians (1) ??

What's rationale for analyzing and reporting

medians instead of means??
 Example 2014

The because difference in sample means is a more

can't be because difference in sample means is a more

Can the because difference biased estimate of difference in population means hat's rationale for analyzing and reporting

medians instead of means??

The means of the means of the means of the mean is a mean in the because difference in sample

means destinate of difference in sample means is a mor medians is biased

Univariate Analysis: Parametric Tests Of Raw Means

- - means of total costs, QALYS, etc.
	-
- preference score) data, but t-tests have been shown to be robust to violations of this assumption when: variate Analysis: Parametric Tests Of Raw Means

Usual starting point: T-tests and one way ANOVA

— Used to test for differences in arithmetic/sample

— Makes assumption that costs are normally distributed

— Makes assumpt variate Analysis: Parametric Tests of Raw Means

Usual starting point T-tests and one way ANOVA

— Used to test for differences in antitmetic/sample

— Mokes assumption to totals are normally distributed

— Mormallity assu al starting point: T-tests and one way ANOVA

been to test for differences in arithmetic/sample

reans of total costs, OALYS, etc.

reansor of that costs are normally distributed

reference score) data, but Liests have bee ar starting point: 1-easts and one way APVOVA

bead to test for differences in arithmetics ample

heads as sumption that costs are normally distributed

dates assumption foutions, well, and the star have been shown

be rob
	-
	-
	-
	-
	- skewness," and "not too extreme"?

17

Steps in Performing a T-test

- France Analysis: Parametric Tests Of Raw Means

 Usual starting point T-tests and one way ANOVA

 Used to lest for differences in arthitemicidesample

 makes assumption froutcome in arthitemicidesample

 Mormally ass – Used to east for dimferences in antimeticsampe

– Makes assumption that costs are normally distributed

– Normally assumption to utilety violated for cost (and

– preference score) deta, but thests have been shown

to – Marcel assumption on actosis are normally distributed

preference society deta, but Letsts have been shown

to the robust to violations of this assumption when:

• Samples moderately large

• Samples moderately large

•
	-
	- -
- treatment groups are similar
- tests

20

Responses To Violation Of Normality Assumption

- Adopt nonparametric tests of other characteristics of distribution that are not as affected by nonnormality of distribution ("biostatistical" approach)
- Stata "ladder" command) ("classic econometric" approach)
- Adopt tests of arithmetic means that avoid parametric
assumptions (most recent development)

- than variability in difference in sample medians
- 2 i i sample diffence in means true diffence in means $<$ / $>$
- $\sum_{\rm i} \left($ sample difference in medians $\rm _i$ true difference in means $\rm)^2$

23 and 23 and 23 and 24 and 25 and 25 and 26 an

Are Sample Means Always Best Estimator?

- for median can be smaller than relative bias for arithmetic mean
- Are Sample Means Always Best Estimator?

 When cost data are sufficiently nonnormal, relative bias

for median can be smaller than relative bias for

arithmetic mean

 e.g., can be shown in simulation that when log of co Are Sample Means Always Best Estimator?

When cost data are sufficiently nonnormal, relative bias

or median can be smaller than relative bias for

unifunction that when log of cost

unifunction that when log of cost

size is normally distributed, occurs only when sample sizes are small and true difference between mean and median is small Are Sample Means Always Best Estimator?

• When cost data are sufficiently nonnormal, relative bias

for median can be smaller than relative bias for
 \rightarrow e.g., can be shown in simulation that when log of cost

is normall Are Sample Means Always Best Estimator?

When cost data are sufficiently nonnormal, relative bias or medicin can be smaller than relative bias for
 \sim e.g., can be shown in simulation that when log of cost

is normally d
- determine when other parameters will have lower relative bias than sample means
	- have to be taken into account

25

Wilcoxon Rank-Sum

- For example Means Always Best Estimator?

 When cost data are sufficiently nonnormal, relative bias

for median can be smaller than relative bias for

and therefore centre are small and true difference between mean

and m from one treatment group has a higher cost than a randomly selected patient from another treatment group (Note: area under ROC curve is equivalent to p-value of Wilcoxon rank-sum test for a diagnostic test's scores) for median can be smaller than relative bias for
 \rightarrow e.g., can be shown in simulation that when log of cost

is normally distributed, occurs only withen sample

sizes are small and the difference between mean

out median is normally distributed, occurs only when sample
sizes are small and true difference between mean
and median is small
and median is small we never know truth, difficult to
between that in actual data we never know that hig
- which an Rx's patients have larger cost is unrelated to size of difference between patients' costs
	- it may be much higher

26 and the contract of the con

29

Kolmogorov-Smirnov

between two cumulative distribution function estimates are significant

Potential Problem with Testing Other Characteristics of Distribution

- differs between treatment groups, such as its shape or location, but not necessarily that arithmetic means differ
- arithmetic mean

Response 2: Transform Data

- distribution
	-
- Response 2: Transform Data
• Transform costs so they approximate a normal
«distribution
– Common transformations
• Log (arbitrary additional transformations required if
• Square root
• Stimate and draw inferences about dif Response 2: Transform Data

Transform costs so they approximate a normal

listribution

- Common transformations

• Log (arbitrary additional transformations required if

any observation equals 0)

• Square root

— Estimat Frameword Considers a Comparison Considers a text of the statement of the common transformations

and the common transformations required if

any observation equals 0)

any observation equals 0)

• Square root

• states a any observation equals 0) Response 2: Transform Data

isom costs so they approximate a normal

ibution

chommon transformations

• Log (arbitrary additional transformations required if

any observation equals 0)

• Square root

stimate and draw inf Response 2: Transform Data

Transform costs so they approximate a normal

listribution

- Common transformations

- Log (arbitrary additional transformations required if

any observation equals 0)

- Estimate and draw infe
	-
	- transformed costs

34

Estimates and Inferences Not Necessarily Applicable to Sample (Arithmetic) Mean

- untransformed costs to estimate and draw inferences about differences in untransformed costs
- Fransform costs so they approximate a normal

distribution

 Common transformations

 Log (arbitrary additional transformations required if

any observation equals 0)

 Square root

 Square root

 Estimate and draw in Transform costs so they approximate a normal

log (arbitrary additional transformations required if

any observation equals 0)

Square root

Square root

Estimate and draw inferences about differences in

transformed costs costs results in geometric mean, a downwardly biased estimate of arithmetic mean any observation equals 0)

= Square root

= Estimate and draw inferences about differences in

transformed costs

transformed costs

Estimates and Inferences Not Necessarily

Applicable to Sample (Arithmetic)

Mean cos
	-
	- Log (arbitrary additional transformations required if
• Square root
• Sugare root
• Sugare root
• Stimates and draw inferences about differences in
• and organization costs
• Sugare and Inferences Not Necessarily
Applica log of costs translate into inferences about differences in geometric mean, not arithmetic mean

Downward Bias of Geometric Mean

-
- downwardly biased estimate of arithmetic mean
	- kurtosis, greater downward bias
- $(10 * 30 * 50)^{0.333} = 24.6621$ $(5 * 30 * 55)^{0.333} = 20.2062$ $(1 * 30 * 59)^{0.333} = 12.0664$ **Exponentiation of mean of logs yields geometric mean**

• Exponentiation of mean of logs yields geometric mean

• In presence of variability in costs, geometric mean

– All ides equal, greater valuances, skewines, or
 $-$ • In presence of variability in costs, geometric mean
 $-$ All else equal, greater variance, skewness, or
 $-$ kurbsis, greater downward bias
 $-$ e.g., $(25 \cdot 30 \cdot 35)^{0.333} = 29.7196$
 $(1 \cdot 3 \cdot 5)^{0.333} = 29.6221$
 $(5$
- exponentiation of mean of logs

38

Retransformation Of Log Of Cost (I)

$$
\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(Z_i - \hat{Z}_i)}
$$

where in univariate analysis, $|\hat{Z}|$ = group mean $\|\cdot\|$ is a substantial properties of \mathbb{R}^2 equivalent

41

Common Smearing Retransformation (II)

- Why are retransformed subgroup-specific means -- 44.7
and 54.3 -- so different from untransformed subgroup
means of 49?
- substantially different

- $SD_2 = 0.8880$; $SD_3 = 0.3274$

 Larger standard deviation for group 2 implies that compared with arithmetic mean, its geometric mean has greater downward bias than does geometric mean for group 3
- common smearing factor cannot give accurate estimates for both groups' arithmetic means

Subgroup-specific Smearing Factors (I)

- Subgroup-specific Smearing Factors (I)
• Manning has shown that in face of differences in
wriance --i.e., heteroscedasticity -- use of a common
smearing factor in retransformation of predicted log of
costs yields biased es Subgroup-specific Smearing Factors (I)
Manning has shown that in face of differences in
variance -- i.e., heteroscedasticity -- use of a common
smearing factor in retransformation of predicted costs
Obtain unbiased estimat variance -- i.e., heteroscedasticity -- use of a common
smearing factor in retransformation of predicted log of costs yields biased estimates of predicted costs Subgroup-specific Smearing Factors (I)

valaring has shown that in face of differences in

variance - i.e., heteroscedasticity - use of a common

smearing factor in retransformation of predicted log of

costs yields biase Subgroup-specific Smearing Factors (I)

• Manning has shown that in face of differences in

variance --i.e., heteroscedasticity --use of a common

smearing factor in etransformation of predicted log of

costs yields biase
- smearing factors
-

$$
\Phi_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} e^{(Z_{ij} - \hat{Z}_{j})}
$$

43

Subgroup-specific Smearing Retransformation (II)

- Subgroup-specific Smearing Retransformation (II)
• All else equal, in face of differences in variance (or
skewness or kurtosis), use of subgroup-specific
smearing factors yields unbiased estimates of subgroup
means
gains f skewness or kurtosis), use of subgroup-specific smearing factors yields unbiased estimates of subgroup means
- Subgroup-specific Smearing Retransformation (II)
• All else equal, in face of differences in variance (or
sheemes or kurtosis), use of subgroup-specific
smearing factors yields unbiased estimates of subgroup
• Use of separ gains from log transformation, because cannot assume p-value derived for log of cost applies to arithmetic mean of cost

46

Potential Problems with Substituting Transformed Data for Raw Data (II)

- difference in log of cost
- cost
	- difference in geometric mean
- difference in arithmetic mean of untransformed cost

Potential Problems with Substituting Transformed Data for Raw Data (III)

- Potential Problems with Substituting Transformed

Data for Raw Data (III)

 Applicability of p-value for log to difference in arithmetic

mean of untansformed cost depends on both

distributions of log being normal and ha mean of untransformed cost depends on both distributions of log being normal and having equal variance and thus standard deviation otential Problems with Substituting Transformed
Data for Raw Data (III)
Applicability of p-value for log to difference in arithmetic
nean of untransformed cost depends on both
traitious of log being normal and having equal bential Problems with Substituting Transformed

Data for Raw Data (III)

poplicability of p-value for log to difference in arithmetic

mean of untansformed cost depends on both

listributions of log being normal and having
	- inferences about difference in log generally applicable to difference in arithmetic mean
	- unequal, inferences about difference in log generally not applicable to difference in arithmetic mean

49

50

Implementation of Bootstrap

- group (thus creating multiple samples)
-

53

Nonparametric Bootstrap and Normality

- so there is no violation of assumptions, but...
- mean, may be better to use median whether sample mean is analyzed parametrically or nonparametrically

56

Why Do Different Statistical Tests Lead To Different Inferences?

- - arithmetic means differ
	- assumption
	-
	- medians differed, p-value would have been significant
	-
	- differ (but not necessarily means or medians)

Summary, Univariate Analysis

- - gain and losers lose
- Summary, Univariate Analysis
• Want statistic that provides best estimate of population
mean
– Because mean * N is best estimate of what gainers
gain and losers lose
best refers to a measure of error that incorporates both Summary, Univariate Analysis

Want statistic that provides best estimate of population

mean

gian and losers lose

gain and losers lose

est refers to a measure of error that incorporates both

hias and variability

m fac Summary, Univariate Analysis

• Want statistic that provides best estimate of population

mean

– Because mean * N is best estimate of what gainers

• Best refers to a measure of error that incorporates both

bias and vari bias and variability Summary, Univariate Analysis

• Want statistic that provides best estimate of population

mean

– Because mean * N is best estimate of what gainers

• Gleat refers to a measure of error that incorporates both

blass and va Summary, Univariate Analysis

Want statistic that provides best estimate of population

— Because mean * N is best estimate of what gainers

gain and losers lose

est refers to a measure of error that incorporates both

hi Summary, Univariate Analysis

Want statistic that provides best estimate of population

enan

enan diosers lose

gain and losers lose

gain and losers lose

dian of discussion

in face of skewness:

— Sample means less bia Summary, Univariate Analysis

• Want statistic that provides best estimate of population

— Because mean * N is best estimate of what gainers

• Best refers to a measure of error that incorporates both

bias and variabilit
- -
	-
- presence of heteroscedasticity

58

Multivariable Analysis Of Economic Outcomes (I)

- use of multivariable analysis may have added benefits:
- Summary, Univariate Analysis
• Want statistic that provides best estimate of population
— Because mean * N is best estimate of what gainers
• Best refers to a measure of error that incorporates both
bias and variability
 groups (by explaining variation due to other causes) (e.g., more/less severe; different countries/centers)
- Summary, Univariate Analysis

Want statistic that provides best estimate of population

Decause mean * N is best estimate of what gainers

gain and lossers losse

lest refers to a measure of error that incorporates both

I Van tatistic that provides best estimate of population

enam

enam

enam

enam dioste lose

des substants and variability

of cost-effects to a measure of error that incorporates both

in face of skewnes:
 \blacksquare and and c – Because mean • N is best estimate of what gainers

gain and losers lose

lest refers to a measure of error that incorporates both

m face of skewness:

– Sample mealan of the lness variable

– Sample mealan of the lness pattern differences by provider, center, or country may have a large influence on costs and randomization may not account for all differences – Sample means less biasaed

— Sample median often less variable

— Sample median often less variable

Transformation/retransformation of limited value in

resence of heteroscedasticity

Litivariable Analysis Of Economic Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting

– mproves power for tests of differences between

groups (by explaining variation due to the reauses)

Facilitates s
	- (e.g., coefficients for other variables should make sense economically)

59

Nonrandom Assignment

analysis necessary to adjust for observable imbalances between treatment groups, but may NOT be sufficient

Multivariable Techniques Used for Analysis of Cost

-
- Multivariable Techniques Used for Analysis of Cost
• Common techniques
• Ordinary least squares regression predicting costs
• Arion proposes after randomization (OLS)
• Ordinary least squares regression predicting log
• Ce – Ordinary least squares regression predicting costs after randomization (OLS) Multivariable Techniques Used for Analysis of Cost

• Common techniques

– Ordinary least squares regression predicting costs

• After andomization (OLS)

• Ordinary least squares regression predicting log

transformation Multivariable Techniques Used for Analysis of Cost

• Common techniques

– Ordinary least squares regression predicting costs

after randomization (OLS)

• Ordinary least squares regression predicting log

transformation o Multivariable Techniques: Used for Analysis of Cost

• Common techniques

– Ordinary least squares regression predicting costs

• Ordinary least squares regression predicting log

• Other techniques:

• Generalized Camar M
- transformation of costs after randomization (log OLS)
-
- - Journal of Health Economics, 2005)
- Itivariable Techniques Used for Analysis of Cost

Common techniques

 Ordinary least squares regression predicting costs

after randomization (OLS)

arther andomization (Close)

Drefinary least squares regression predicti Francisco Techniques Used for Analysis of Cost

Common techniques

Common techniques

after randomization (OLS)

Drians signates regression predicting log

Drians (Bassical Clines Models SCLM)

Drians (Basu and Rathouz, 20 Biostatistics 2005)

61

Generalized Linear Models (GLM)

- -
- Multivariable Techniques Used for Analysis of Cost

 Common techniques

 Ordiany least squares regression predicting costs

 Cridinary least squares regression predicting log

 Christmation of costs after randomization Itivariable Techniques Used for Analysis of Cost

Common techniques

— Ordinary least squares regression predicting toots

after anatomization (O.U.S.)

anatomization of costs after randomization (log OLS)

Deneralized Lin Itivariable Techniques Used for Analysis of Cost

Common techniques

ander randomization (OLS)

ander randomization (OLS)

ander randomization (OLS)

Differentiated Linear Models (SLM)

Differentiated Linear Models (SLM)
 mon techniques

rolring least squares regression predicting costs

mery least squares regression predicting log

signimation of oxes after randomization (log OLS)

seralized Linear Models (SLM)

or techniques:

the relatio from scale of estimation to raw scale - Ordinary least squares regression predicting costs

of trainsformation (OLS)

trainsformation of costs after randomization (Og OLS)

trainsformation of costs after randomization (log OLS)

+ Generalized Linear Models (S
- (based on data)

62

GLM Relaxes OLS Assumptions

- Generalized Linear Models (GLM)

 GLM models:

 Don't hague normality or homoscedasticity,

 Evaluate log of mean, not mean of logs, and thus

 To unid them, must leentify "link function" and "family"

(based on data) assumption that $E(y/x) = \Sigma \beta_i X_i$ (OLS) or $E(ln(y)/x) = \Sigma \beta_i X_i$ (Log OLS) • GLM models:

• Clumcodels:

• Don't have profines nelated to retransformation

• Contribute go fmean, not mean of digins, and thus

• To build them, must learnith to raw scale

• To build them, must learnith "link funct – Evaluate horman, not means of logs, and thus

Ley Charle log of mean, not mean of logs, and thus

then scale of estimation to raw scale

of build them, must identify "link function" and "family"

based on data)

Shased – Evaluate log of mean, not mean of logs, and thus

• Chort have problems related to retransformation

for mocale of estimation to raw scale

to build them, must identify "link function" and "family"

based on data)

• GL - Don't have problems related to retransformation

from scale d estimation to raw scale

Co build them, must identify "link function" and "family"

Dased on data)

GLM Relaxes OLS Assumptions

Sublity to choose among from scale of estimation to raw scale

from scale of estimation to raw scale

based on data)

CLM Relaxes OLS Assumptions

Unity to choose among different links relaxes

sumption that E(y)x) = Σβ,X_i (OLS) or E((h(y))x)=Σ
- assumption of constant variance
	-
	-
	-
	-

- combination of predictors is related to prediction on original scale Link Function

y characterizes how linear

lictors is related to prediction on

clude:

= $\beta_i X_i$ (used in OLS)

(NOT used in log OLS) • Link frunction directly characterizes how linear

orbihation of pedicitors is related to prediction on

• Camples of links include:

• Camples distribution:

• dentity Link: $\dot{Y}_i = g_i X_i$ (used in OLS)

• GLM with log l Link Function

• Link function directions is related to prediction on

• Examples of links include:

• Currently Link: $\hat{v}_i = \beta_i X$, (used in OLS)

– Identify Link: $\hat{v}_i = \alpha_i \rho^{(i(x_i))}$ (NOT used in log OLS)

• GLM with ink function directly brancaderizes how linear

incombination of predictors is related to prediction on

riginal scale

— Identity Link: $\tilde{Y}_i = g_i X_i$ (used in OLS)

— Identity Link: $\tilde{Y}_i = g_i X_i$ (Worth used in log OLS)
- - Identity Link: $\hat{Y}_i = \beta_i X_i$
		- $\hat{Y}_i = \exp^{(\beta_i X_i)}$
-

65

Family

- relationship
- include: • Icag link: $\hat{Y}_i = \exp^{(i\lambda x_i)}$ (NOT uses it in log OLS (in/E(y/x))=Xβ)

• CLM with log link differs from log OLS (in/E(y/x))=Xβ)

• Cannot inverse Gaussian factor

• Currently, families for continuous data available
	-
	-
	-
- ombination of predictors is related to prediction on

sixamples of links include:
 $\frac{1}{2}$ log link: $\frac{y}{Y} = 8 \times y^5$ (NorTused in log OLS)

LIM with log link differs from log OLS (In(E(y/x))=Xβ)

LIM with log link di mginal scale
 $\frac{1}{2}$ and scale of links include:
 $\frac{1}{2}$ to the simulation (NOT used in OLS)
 $\frac{1}{2}$ to say $\frac{1}{2}$ e $\frac{1}{2}$ (NOT used in log OLS)
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{$ Examples or links include:

The institution of the state of the USD (the USD)
 $-\log |\text{link} \cdot \hat{Y}| = \log p^{(N \times N)}$ (NOT used in log OLS)

LAM with log link differs form log OLS (th(E(y)x))=Xβ)

Family

Specifies distribution that mean)
- relaxes assumption of homoscedasticity

GLM Comments (I)

-
-
- GLM Comments (I)

 Advantages

 Relaxes normality and homoscedasticity assumptions

 Consistent even if not correct family distribution

 Choice of family only affects efficiency if link

 Gians in precision from esti GLM Comments (I)

Movantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not correct family distribution

• Choice of family only affects efficiency if link

– Cains in precision from estima GLM Comments (I)

Movantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not correct family distribution

• Choice of family only affects efficiency if link

function and covariates are spec GLM Comments (I)

antages

Fellows normality and homoscedasticity assumptions

Consistent even if not correct family distribution

• Choice of family only affects efficiency if link

function and covariates are specified c function and covariates are specified correctly GLM Comments (I)

Contained Comments (I)

The Relaxes normality and homoscedasticity assumptions

- Consistent even if not correct family distribution

- Choice of family only affects efficiency if link

- function and cov GLM Comments (I)

Ndvantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not correct family oistribution

– Choice of family only affects efficiency if link

– Choice of family only affects GLM Comments (I)

- Advantages

- Relaxes normality and homoscedasticity assumptions

- Consistent even if not correct family distribution

- Consistent even if not correct family distribution

- Gains in precision from es GLM Comments (I)

Includes Frequencial precision of the constant even in first constant even in first constant constant constant

Choice of family only affects efficiency if link

tunction and covariates are specified corr GLM Comments (I)

Gladiages

encommity and homoscedasticity assumptions

consistent even if not correct family distribution

choice of family only affects efficiency if link

function and covariates are specified correctly entages

and the memorial of the control of the control of the control of family of the control of family of the

control of a family only affects efficiency if link

that in precision from estimator that matches data

ane
	- generating mechanism
	-

67

GLM Comments (II)

- - residuals have high kurtosis (>3)
	-

68

Retransformation

- GLM comments (II)

 Disadvantages

 Can suffer substantial precision losses

 If heavy-tailed (log) error term, i.e., log-scale

 residuals have high kurtosis (>3)

 If family is misspecified

 GLM avoids problem t results of log OLS yields biased estimates of predicted costs
- retransformations (also seen in log OLS models):
- Glandvantages

 Can suffer substantial precision losses

 If heavy-tailed (log) error term, i.e., log-scale

 residuals have high kurtosis (>3)

 If family is misspecified

 If family is misspecified

 CLM avoids p – Can suffer substantial precision losses

• residuals have high kurtosis (>3)

• If family is misspecified

• If family is misspecified

• If family is misspecified

• The family is misspecified

• Retransformation

ELM a estimated holding all else equal; however, retransformation (to estimate costs) reintroduces covariate imbalances

Recycled Predictions

- For multiplicative models (e.g., log or logit), shouldn't use

means of covariates when making predictions

 Mean of retransformations does not equal

retransformation of mean

Instead use method of recycled predictions t means of covariates when making predictions For multiplicative models (e.g., log or logit), shouldn't use

remains of covariates when making predictions

- Mean of retransformations does not equal

relates method of recycled predictions to create an

related use met For multiplicative models (e.g., log or logit), shouldn't use

means of covariates when making predictions

– Mean of retransformations does not equal

thereaformation of mean

the interaformation of means

the interaforma • Recycled Predictions
• For multiplicative models (e.g., log or logit), shouldn't use

means of covariates when making predictions
• Mean of retransformation of mean
• Hasted use method of recycled predictions to create
	- retransformation of mean
- identical covariate structure for two groups by:
- Recycled Predictions

For multiplicative models (e.g., log or logit), shouldn't use

means of covariates when making predictions

 Mean of retransformations does not equal

retransformation of mean

metransformation of re Recycled Predictions

For multiplicative models (e.g., log or logit), shouldn't use

neans of covariates when making predictions
 $-$ Mean of retransformation of mean

retransformation of mean

retransformation of mean

t and predicting $\hat{\mathsf{Z}}_{\mathsf{10}}$ Frame and the model of the model of the model of the model of the means of covariates when making predictions

relation of the main of mean

retansformation of mean

retansformation of mean

retansformation of mean

retans Frame the multiplicative models (e.g., log or logit), shouldn't use

means of covariates when making predictions

relation of recansormation of mean

retatasformation of mean

retatasformation of mean

retatasformation of For multiplicative models (e.g., log or logit), shouldn't use

eneans of covariates when making predictions

restand described of recycled predictions to create an

shotstad use method of recycle predictions to create an
 means of covariates when making predictions

— Mean of retransformation doman

restand use method of recycled predictions to create an

relation downton as if they were in treatment group 0

— Coding everyone as if they we retansformation of mean
restad use method of recycled predictions to create an
entitial covariate structure for two groups by:
and predicting \mathbb{Z}_e
and predicting \mathbb{Z}_e
and predicting \mathbb{Z}_n
and predicting $\mathbb{$ entate covariate structure for two groups by:

and predicting \vec{z}_a

a
- and predicting 2_{11}
- "margins" command

What is "margins" Command Doing?

- - treatment status variable
	- observations independent of actual treatment status
	- $-$ Predicting pcost₀, the predicted cost had everyone been in treatment group 0
	- observations independent of actual treatment status
	- $-$ Predicting pcost₁, the predicted cost had everyone been in treatment group 1

71

Margins

What is "margins" Command Doing?

Margins command equivalent to the quasis the

treatming at emporary Of variable for all

treatment status winding

Description is the prodicted cost had everyone

Description gross, the p family(gamma) margins treat
Predictive margins Mumber of obs = 500 Model VCE : OIM Expression : Predicted mean cost, predict() -- | Delta-method
| Margin Std Err z P>|z| [95% Conf. Intl] ------+-- treat | 0 | 2963.182 75.08546 39.48 0.000 2816.87 3111.199 1 | 3099.562 79.74378 38.87 0.000 2943.17 3255.76 -- Solution in the control of the product of the product of the product of the control of

Special Cases (I)

- -
- Special Cases (I)
• A substantial proportion of observations have 0 costs
• May pose problems to regression models
• Commonly addressed by developing a "two-part"
model in which first part predicts probability that cost Special Cases (I)

Substantial proportion of observations have 0 costs

— May pose problems to regression models

— Commonly addressed by developing a "two-part"

model in which first part predicts probability that costs
 Special Cases (I)

Maubstantial proportion of observations have 0 costs

— May pose problems to regression models

— Commonly addressed by developing a "two-part"

model in which first part predicts probability that costs
 - Commonly addressed by developing a "two-part"
model in which first part predicts probability that costs are zero or nonzero and second part predicts level of costs conditional on there being some costs Special Cases (I)

Special Cases (I)

Sharahida proportion of observations have 0 costs

Iday pose problems to regression models

in which first part investigating a "two-part"

re zero of nonzero and second part predicts Special Cases (I)

Special Cases (I)

Maskantial proportion of observations have 0 costs

May pose problems to regression models

commonly addressed by developing a "two-part"

rezero or nonzero and second part predicts le Special Cases (I)

• A substantial proportion of observations have 0 costs

– Commonly addressed by developing a "two-part"

model in which first part predicts probability that costs

are zero or nonzero and second part pr Special Cases (I)

Substantial proportion of observations have 0 costs

— May pose problems to regression models

are zero or nonzero and second part predicts probability that costs

are zero or nonzero and second part pre value to the missing of the missing and the missing of the missing and the missing and the missing and the missing of the missing of the missing of the missing of
	-
	-

73

Special Cases (II)

- Results derived from analyzing only completed cases
or observed costs are often biased
- data and adopt a method that gives unbiased results in face of missingness Special Cases (II)

- Censored costs

- Results derived from analyzing only completed cases

- observed costs are often biased

- Need to evaluate "mechanism" that et to missing

data and adopt a method that gives unbiased Special Cases (II)

- Censored costs

- Results derived from analyzing only completed cases

- Reed to evaluate "mechanism" that lost to missing

- dada and adopt a method that gives unbiased results

in tace of missingnes Special Cases (II)

- Results derived from analyzing only completed cases

or observed costs are often blased

- Need to evaluate "mechanism" that led to missing

- data and adopt a method that gives unbiased results

in f

74

Three Appendices

-
-

- combination of predictors is related to prediction on original scale Link Function

y characterizes how linear

lictors is related to prediction on

clude:

= $\beta_i X_i$ (used in OLS) • Link function directly characterizes how linear

orbihatelon of pedicitors is related to prediction on

• Examples of finks include:

– log link: $\tilde{Y}_i = \rho_i X_i$ (used in OLS)

– log link: $\tilde{Y}_i = \rho_i \rho_i / x_i$

– log lin • Link function directly characterizes how linear

• combination of predictors is related to prediction on

• Examples of links, include:

– leterlify Link: $\hat{Y}_i = \exp^{(i(X_i))}$

– log link: $\hat{Y}_i = \exp^{(i(X_i))}$

– log link: • Link function directly characterizes how linear
orbinalscale
orbinalscale
 $-$ Examples of links include:
 $-$ ledglink: $\hat{Y}_i = \hat{\mathbf{e}}_i \mathbf{X}_j$ (used in OLS)
 $-$ log link: $\hat{Y}_i = \hat{\mathbf{e}}_i \mathbf{X}_j$ (used in OLS)
 $\begin{bmatrix$
-
- Examples of links include:
– Identity Link: $\hat{Y}_i = \beta_i X_i$
	- $\hat{Y}_i = \exp^{(\beta_i X_i)}$

77

Log Link

-
-

ln(E(y/x))=Xβ

in log OLS, we are assuming: • Examples of links include:

– ldentity Link: $\hat{Y}_i = \exp^{(i \times \lambda)}$

– log link: $\hat{Y}_i = \exp^{(i \times \lambda)}$

– log link: $\hat{Y}_i = \exp^{(i \times \lambda)}$

Log link

– log link is most commonly used in literature

– When we adopt log link,

 $E(ln(y)/x)=X\beta$

i.e. log of mean $\mathbb Z$ mean of log costs

82 and the set of the

Power Link Function

- Stata's power Link Function
• talabs power link provides a flackiel init function
• tallows generation of a wide variety of named and
unnamed links, e.g., $\frac{1}{2}$ = BX₎
– power .5 = Square root link; $\frac{1}{U_i}$ = $(B$ • Power Link Function
• Stata's power link provides a flexible link function
• It allows generation of a wide variety of named and
 $-$ power 5 = Square root link; $\hat{u}_i = B\vec{x}_i$
 $-$ power 5 = Square root link; $\hat{u}_i =$ Power Link Function

state's power link provides a flexible link function

and allows generation of a wide variety of named and

moment = lichethy link; $\dot{Q}_i = RX_i$
 $\rightarrow power = 5$: $\dot{Q}_i = (8X)^i$
 $\rightarrow power = -1 = \text{reciprocal link}; \quad \dot{Q}_i = 4(X$
- unnamed links, e.g.,
- power 1 = Identity link; $\hat{u}_i = B_i X_i$
- power .5 = Square root link; $\hat{u}_i = (B_i X_i)^2$
- power .25: $\hat{u}_i = (B_i X_i)^4$
- power 0 = log link; \hat{u}_i = exp(BiXi)
- power -1 = reciprocal link; $\hat{u}_i = 1/(B_iX_i)$
- power -2 = inverse quadratic; $\hat{u}_i = 1/(B_i X_i)^{0.5}$

83 and the set of the

Selecting a Link Function

-
- via the provides a nextible in thruction

and allows generation of a wide variety of named and

manned links, e.g.,
 $-\text{power 1 = tdetby link; \ \hat{u}_i = [B,X]^2$
 $-\text{power 2 = i} \ \hat{u}_i = [B,X]^2$
 $-\text{power 3 = \hat{u}_i} \ \hat{u}_i = \exp(BiX)$
 $-\text{power 4 = tdetyporal link; \ \hat{$ manned links, cg.

– power 5 = Square root link; $\hat{u}_i = BX_i$

– power $0 = \log(X_i)^2$

– power $0 = \log(\ln k; \hat{u}_i) = \exp(B|X)$

– power $-1 = \text{reciprocal link}; \hat{u}_i = t/(BX)$

– power $-2 = \text{Inverse quadratic}; \hat{u}_i = t/(BX)^{0.5}$

– power $-2 = \text{Inverse quadratic}; \hat{u}_i = t/(BX)^{$ – power. 5. = Square root link; $\hat{u}_i = (B_iX)^2$

– power $0 = \log f \sin k$; $\hat{u}_i = \exp(BiX)$

– power -1 = reciprocal link; $\hat{u}_i = 1/(B_iX)$

– power -2 = inverse quadratic; $\hat{u}_i = 1/(B_iX)^{0.5}$

– power -2 = inverse quadr
	- scale of estimation
	- systematic bias in fit on raw scale
	- in fit on raw scale
	-

Family

- relationship
- Family
• Specifies distribution that reflects mean-variance
• Currently, families for continuous data available in Stata
• Currently, families for continuous data available in Stata
• Poisson (variance is proportional to m • Specifies distribution that reflects mean-variance
• relationship
• Currently, families for continuous data available in Stata
• inclue:
• Gaussian (constant variance)
• Poisson (variance is proportional to equare of mea include: Family

Specifies distribution that reflects mean-variance

Literarity, families for continuous data available in Stata

Chromethy, families for continuous data available in Stata

Cholde:

— Gaussian (constant variance)
 Family

Specifies distribution that reflects mean-variance

elationship

Currently, families for continuous data available in Stata

Currently, families for continuous data available in Stata

- Poisson (variance is propor Family

Fermity

Electionship

delationship

clumenty, families for continuous data available in Stata

clument (variance is proportional to mean)

– Foisson (variance is proportional to square of mean)

— mean (variance i Family

Pecifies distribution that reflects mean-variance

elationship

Clurerently, families for continuous data available in Stata

— Gaussian (constant variance)

— Poisson (variance is proportional to square of mean)
 Family

• Specifies distribution that reflects mean-variance

• Currently, families for continuous data available in Stata

• Currently, families for continuous data available in Stata

• Caussian (constant variance)

– Po
	-
	-
	-
	- mean)
- relaxes assumption of homoscedasticity

85

Selecting a Family

- recommends a family given a particular link function
- link
- Family

 Specifies distribution that reflects mean-variance

 Currently, families for continuous data available in Stata

include:

 Currently, families for continuous data available in Stata

 Gaussian (constant varia Family

• Specifies distribution that reflects mean-variance

relationship

• Currently, families for continuous data available in Stata

– Gausson (containt variance)

– Pensson (carriere is proportional to mean)

– Impre • Specifies distribution that reflects mean-variance

• Currently, families for continuous data available in Stata

• Currently, families for continuous data available in Stata

• Claussian (contacte is proportional to mea \cdot test predicts square of residuals (res²) as a function of log of predictions (lnyhat) by use of a GLM with a log link and gamma family to
	-
	- glm res2 lnyhat,link(log) family(gamma), robust
- nclude:

Caussian (constant variance)

 Gaussian (variance is proportional to mean)

 Emma (variance is proportional to square of mean)

 Imverse gaussian (variance is proportional to cube of

mean)

Beleon (pisson, gam - Poisson (variance is proportional to mean)

- Gamma (variance is proportional to square of mean)

- Inverse gaussian (variance is proportional to cube of

• Use of poisson, gamma, and inverse Gausian families

relaxes as weights and clustering should be used for modified Park test • Modified Parks test is a "constructive" test link to commended after GLM regression that uses particular

• Implemented after GLM regression that uses particular

• the predicts square of residuals (res²) as a functio Selecting a Family

Modified Parks test is a "constructive" test that

ecommends a family given a particular link function

mylemetred after GLM regression that uses particular

mylemetred after GLM regression that uses pa

86 and the state of the state of

Recommended Family, Modified Park Test

- -
	-
	-
	-
	-
- Selecting a Family

Modified Parks test is a "constructive" test that

ecommends a family given a particular link function

mylemented after GLM regression that uses particular

mx

and gain predictions (in_{ly}phat) by use Modified Parks test is a "constructive" test that

ecommentes a family given a particular link function

mylemented after GLM regression that uses particular

mylemented after GLM regression that uses particular

of grof p Molare Parks test is a constructive rest transit

ecommends a family given a particular link function

methemented after GLM regression that uses particular

Intervalses specifical squares of residuals (res⁵) as a funct • Fundemented after GLM regression that uses particular

in the lime of the coefficients (rest) as a function of

Leg of predictions (rights) by use of a GLM with a log link

or diagonary for a GLM with a log link

or diag members are correspondent via the size of the first density of the first density of productions (mythet) by the of a GLM with a log link
of prior density to the distribution (in the simple subtraction) and the substanting observations from maximum-valued observation and rerunning analysis

88 and the set of the

Frame), Chi2 and p-axias in distanced on posterior and Hermannicus Control

Proteince 22 113 0.000 0.000

Newton: A 2022 0.0000

Securia disconsity of Matagonia

22 10 0000

Records and Matagonia

Records and Matagonia

M Communication of the control of the contr 1. M Analysis of Cost

1. MPois Log/Gam 0.65/Pois

0.8918 0.2460 0.9027

0.7021 0.1273 0.7460

0.5134 0.6199 0.5670

113 136 88

0.26' 0.21 0.39'

113 136 88

0.26' 0.21 0.39'

Recent) GLM Analysis

Pearson Pregibon H&M

0 Summary: GLM Analysis of Cost

usion (1000 0.8818 0.2446 0.697e/as

usion (1000 0.8818 0.2446 0.697e/as

usion (1002 0.8818 0.246 0.697e/as

using 0.4397 0.3794 1.4745 0.2441

using 0.437 0.4379 0.2441 0.897e/as

using 0.8 16/Gau 16/Pois LogCam 0.65/Pois

16/gbon 0.8813 0.7021 0.1273 0.7480

116&L 0.3487 0.5134 0.6199 0.5870

116&L 0.3497 0.5134 0.6199 0.5870

16/members/7 0.4:000 0.339 1.4746 0.246

16/he 0.84 0.26° 0.21 0.39°

value dienv

Failure of % Interpretation of Log OLS

- log OLS predicting log cost ≠ observed 50% difference
- coefficients from log OLS (0.547 and 0.141) nor $\exp^{(\mathrm{coeff.})}$ 1 (0.727 and 0.152) equal observed % differences (50% and 0%)

coefficient from GLM predicting cost ≠ observed 50% difference $\frac{\text{LMCoot}(.\text{Cost}(log) \text{Gam})}{\text{Sp}}$
 $\frac{\text{LMCoot}(.\text{Cost}(\text{log} \text{Gam}) \cdot \text{G.50}}{0.50} = \frac{0.06}{0.50} = \frac{0.06}{0.06}$
 $\text{EFG difference between G2 vs G1 and G3 vs G1, 0.405}$
 $\text{effficiency} = \text{Eut exp}^{0.405} \cdot 1 \text{ does } (0.5 \text{ vs } 50\%)$
 $\text{efffactiveence between groups G3 vs G2, both coefficient}$
 $\text{and } \text{exp}^{0.$ $\frac{m_1 - 1}{2}$
 $\frac{m_2 - 1}{2}$

of differences between G2M predicting cost *4* observed 50%

Function CLM predicting cost *4* observed 50%

Europe^r of comparison of coefficient

of exp^{(0,-}1 equal observed difference via the method of the state of the state

94

Summary, Percentage Interpretation

- - unreasonable
 $-$ Percentage interpretation of $exp^{(coef)}$ -1 reasonable
	- when strict homoscedasticity on log scale
	- reasonable when log SDs differ
	-
	- unreasonable
	- whether or not SDs on log scale are identical

QALY Evaluation

- **COALY Evaluation**
• While substantial attention has been paid to models for
evaluation of cost, substantially less has been paid to
models for evaluation of QALYs
• CALY distribution shares certain complicating features
 evaluation of cost, substantially less has been paid to models for evaluation of QALYs
- with costs, but also has its own complicating features
- $QALY$ Evaluation
• While substantial attention has been paid to models for
evaluation of cost, substantially less has been paid to
models for evaluation of $QALY$ s
• $QALY$ distribution shares certain complicating features
 QALY Evaluation

While substantial attention has been paid to models for

valuation of cost, substantially lees has been paid to

models for evaluation of QALYs

ALY distribution shares certain complicating features

with preference assessment instrument (e.g., –0.594 and 1.0 for EQ-5D) GALY Evaluation

While substantial attention has been paid to models for

Waluation of cost, substantially less has been paid to

models for evaluation of QALYs

AALY distribution shares certain complicating features

with CALY Evaluation

While substantial attention has been paid to models for

valuation of cost, substantially less has been paid to

models for evaluation of QALYs

ALY distribution shares certain compliciating features

wit GALY Evaluation

While substantial attention has been paid to models for

valuation of OALY substantial) less has been paid to

models for evaluation of OALY

MAY distribution shares certain complicating features

with co
	-
	- modal (see Figure on next slide)
	-

97

98

Multivariable Approaches

- approaches
	- OLS (or GLM with identity link and gauss family)
probably commonest
- Alternatives
	- -
		- equivalent, beta regression (need specialized code for Stata), (Basu and Manca)
	- Adjusted limited dependent variable models (Alava
et al.)
- work is required before we will be able to identify best practice the contract of the c

Implemented Models

-
-
- Implemented Models
• Start with GLM gauss/identity
– Evaluate GLM diagnostics
– If necessary, reestimate GLM with better fitting family
• Also assess GLM gamma/log
– Evaluate GLM diagnostics
– If necessary, reestimate GLM Implemented Models

Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, restimate GLM with better fitting family

Islo assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimate GLM Implemented Models

Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

So assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimate GLM Implemented Models

• Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

– Also assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimat Implemented Models

Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

Islo assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimate GL Implemented Models

Extart with GLM gauss/identity

— Evaluate GLM diagnostics

— If necessary, reestimate GLM with better fitting family

Nso assess GLM gamma/log

— If necessary, reestimate GLM with better fitting family
	-
	-
	-

100

Troubling Findings

- have any families that are negative) and p-value for named families are all significantly rejected
- Troubling Findings
• Coefficient on modified Park test is negative (we don't
have any families that are negative) and p-value for
named families are all significantly rejected
• When confronted with coefficient < -0.5, con **Froubling Findings
• Coefficient on modified Park test is negative (we don't have any families that are negative) and p-value for
named families and a regative) and p-value for
• When conforonted with coefficient** ϵ **-0** subtracting all observations from maximum theoretically possible observation (e.g., 1.0 for most, if not all, instruments)

103

Family 1: track dissert block backets and the stress

there is the stress of the Vienals Margaret Control and C

112

Link function:	Variance function: V(u)=u*(1-u)	$g(u) = ln(u/1-u)$			[Bernoulli] [Logit]	
	Log likelihood = -238.9699913				AIC .97588	
nqaly	Coef	Std Err	$\mathsf z$	P > z	BIC-2050.859 95% CI	
1.treat	.2626131	.1834617	1.43	0.152	-.0969653 .6221914	
dissev	-.6328458	.832264	-0.76 0.447		-2.264053 .9983617	
blcost	-0001494	.0001208	-1.24 0.216		-0003862	.0000875
blqaly	.8675488	.6338201	1.37	0.171	-.3747157 2.109813	
_cons	.0373004	.6190775	0.06 0.952		-1.176069	1.25067
eeict2011.dta						
115						
	Logit/Binomial 1 Recycled Predictions					
	glm bqaly i.treat dissev blcost blqaly, link (logit) family (binomial 1)					
	margins treat					
	Margin Std. Err. ---+		z P> z		[95% Conf. Interval]	
treat						
	0 ₁	.5628 0.0312 18.02		0.000	.5016 .6441	
	1	.6254 0.0305 20.53 0.000			.6852 .5657	
	DIFFERENCE: .0626					
116						
	Run Link DIAGNOSTICS, Logit/Binomial 1					
	FITTED MODEL: Link = Logit ; Family = Binomial					
	Results of tests of GLM Identity link					
	Pearson Correlation Test:					.9914
	Pregibon Link Test:					.5605
	Modified Hosmer and Lemeshow:					.9242

116

