Analysis of Patient-Level Cost Data (With QALY Analysis Appendix)

Henry Glick

Epi 550

April 1, 2020

1

Outline

- Univariate analysis
 - Policy relevant parameter for CEA
 - Cost data 101
 - T-tests
 - Response to violation of normality
 - Primer on log cost
 - Why do different statistical tests lead to different inferences?
- Multivariable analysis
 - Common techniques
 - General linear models (GLM)

2

Policy Relevant Parameter for CEA

- In welfare economics, projects cost-beneficial if winners from any policy gain enough to be able to compensate losers and still be better off themselves
- Decision makers interested in total program cost/budget
- Policy relevant parameter quantifies how much losers lose, or cost, and how much winners win, or benefit

3

Policy Relevant Parameter for CEA (2)

- Whether or not data are skewed, sample mean * N provides unbiased estimate of population mean * N

 Represents unbiased estimate of gains and losses
- When data are skewed, Median * N is biased estimate of gains and losses

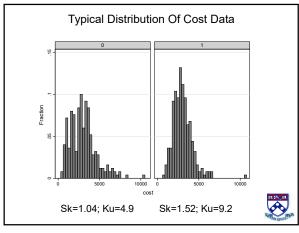
Initial advantage: sample mean (aka arithmetic mean)

A

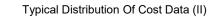
4

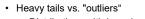
Policy Relevant Parameter for CEA (3)

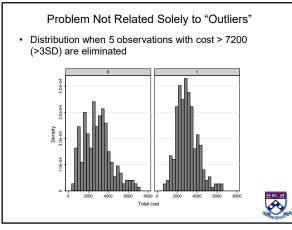
Distribution of mean generally more variable than distribution of the median


Potential advantage: median

5


Cost Data 101


- Commonly right-skewed (i.e., long, heavy, right tails)
- Data tend to be skewed because:
 - Can have 0 costs, but not negative costs
 - Most severe cases may require substantially more services than less severe cases
 - Certain very expensive events occur in relatively small number of patients
 - A minority of patients are responsible for a high proportion of health care costs



 Distributions with long, heavy, right tails will have larger sample means than medians

Mean		ians When > 7200 are I	5 Observati Eliminated	ons with
	Full S	ample	Trimr	med *
	Group 0	Group 1	Group 0	Group 1
Mean	3015	3040	2927	3010
Median	2826	2901	2816	2885

* p = 0.003 and 0.000 for nonnormality of groups 0 and 1, respectively

10

"If the data are skewed, the mean doesn't tell us anything"

Do you agree?

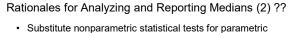
11

Current wisdom about using parametric tests of means in cases where data are skewed??

??? Don't analyze or report means ?????? Analyze and report medians instead ???

13

What's rationale for analyzing and reporting medians instead of means??


14

Rationales for Analyzing and Reporting Medians (1) ??

 Can't be because difference in sample means is a more biased estimate of difference in population means

 Sample mean is unbiased while difference in sample medians is biased

- tests because:
 - Data are skewed and Student's t-test assumes normality?
 - Data are skewed and OLS regression assumes normality of residuals?
 - In presence of skewness, distribution of mean likely to be much more variable (i.e., less efficient) than distribution of median?
 - · How important is efficiency of a biased estimator?
 - Others ???

Univariate Analysis: Parametric Tests Of Raw Means Usual starting point: T-tests and one way ANOVA Used to test for differences in arithmetic/sample means of total costs, QALYS, etc. Makes assumption that costs are normally distributed

- Normality assumption routinely violated for cost (and
- preference score) data, but t-tests have been shown to be robust to violations of this assumption when:
 - · Samples moderately large
 - Samples are of similar size and skewness
 - Skewness is not too extreme
- What is meant by "moderately large," "similar size and skewness," and "not too extreme"?

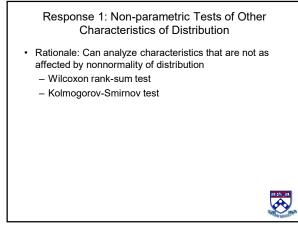
17

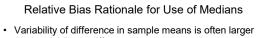
Steps in Performing a T-test

• Evaluate whether or not outcome is normally distributed - sktest, joint test of skewness and kurtosis

- Alternative tests:
 - swilk
 - sfrancia
- Evaluate whether or not standard deviations of costs for treatment groups are similar
- Perform t-test and interpret it in relationship to prior two tests

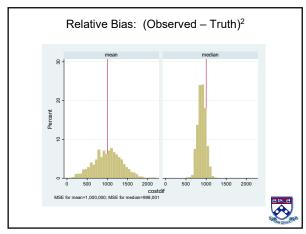
Test	p-value	Conclusion
Normality		
sktest, group 0	0.0	Failed
sktest, group 1	0.0	Failed
Equality of standard devi	iations	
sdtest	0.00	Failed


			Results	of T-Test		
ttest	cost,	by(treat)) unequal			
			h unequal va			
Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	250	3015 3040	100.1052 73.91742	1582.802	2817.839	3212.161
comb	500	3027.5	62.15917			
			124.4381		-269.5399	
		ean(0) -	mean(1) Satterthwai	te's degrees		= -0.2009 = 458.304
			Ha: d Pr(T >			
						Solder Line


20

Responses To Violation Of Normality Assumption

- Adopt nonparametric tests of other characteristics of distribution that are not as affected by nonnormality of distribution ("biostatistical" approach)
- Transform data to approximate normal distribution (e.g., Stata "ladder" command) ("classic econometric" approach)
- Adopt tests of arithmetic means that avoid parametric assumptions (most recent development)



than variability in difference in sample mediansEmpirical question whether:

 $\sum_{i} \left(\text{sample diffence in means}_{i} - \text{ true diffence in means} \right)^{2}$ </br>

 $\sum_{i}\left(\text{sample difference in medians}_{i}\text{ - true difference in means}\right)^{2}$

Are Sample Means Always Best Estimator?

- When cost data are sufficiently nonnormal, relative bias for median can be smaller than relative bias for arithmetic mean
 - e.g., can be shown in simulation that when log of cost is normally distributed, occurs only when sample sizes are small and true difference between mean and median is small
- Given that in actual data we never know truth, difficult to determine when other parameters will have lower relative bias than sample means
 - In part because degrees of both bias and skewness have to be taken into account

25

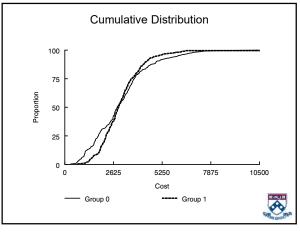
Wilcoxon Rank-Sum

- Estimates probability that a randomly selected patient from one treatment group has a higher cost than a randomly selected patient from another treatment group (Note: area under ROC curve is equivalent to p-value of Wilcoxon rank-sum test for a diagnostic test's scores)
- Referred to as a test of medians because frequency with which an Rx's patients have larger cost is unrelated to size of difference between patients' costs
 - Rx 2 may be higher less of time, but when it is higher it may be much higher

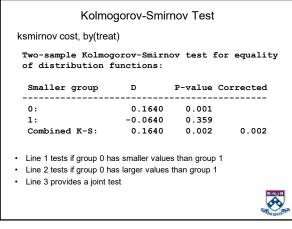
Group	Outcome	Rank	0 > 1	1 > 0	
1	16	10		5	Means:
1	14	9		5	6.8 vs 8.0
0	9	8	3		Medians: 7 vs 5
0	8	7	3		Rank sum
0	7	6	3		29 vs 26
0	6	5	3		Times
1	5	4		1	greater: 14 vs 11
0	4	3	2		14 VS 11
1	3	2		0	
1	2	1		0	11.00

Rank-Sum T ranksum cost, by(treat) Two-sample Wilcoxon	,		
treat	obs r		expected
1	5 5	29 26	27.5 27.5
combined		55	55
unadjusted variance adjustment for ties	0	.00	
adjusted variance Ho: cost(treat==0) =	cost(tr		
z = 0 Prob > $ z = 0$			Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.

Rank-Sum Test,	Hypot	hetical Cos	st Data Se	t
ranksum cost, by(treat)				
Two-sample Wilcoxo	on rank-	sum (Mann-Wh	itney) test	
treat		rank sum		
		61183.5		
1		64066.5		
combined				
unadjusted variand	ce 2609	375.00		
adjustment for tie	es	-3.51		
adjusted variance	2609	371.49		
Ho: cost(treat==0)		(treat==1)		
z = Prob > $ z =$	-0.892			THE OWNER WHEN
Prob > 2 =	0.3722			
				AND DESCRIPTION OF THE PARTY OF


29

Kolmogorov-Smirnov


Test of difference in cumulative distribution function

• Estimates whether maximum absolute difference between two cumulative distribution function estimates are significant

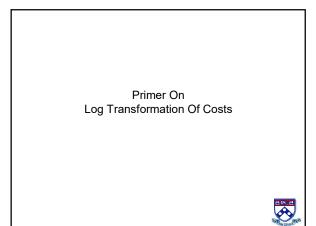
32

Potential Problem with Testing Other Characteristics of Distribution

- Tests indicate that some measure of cost distribution differs between treatment groups, such as its shape or location, but not necessarily that arithmetic means differ
- Resulting p-values not necessarily applicable to arithmetic mean

Response 2: Transform Data

- Transform costs so they approximate a normal distribution
 - Common transformations
 - Log (arbitrary additional transformations required if any observation equals 0)
 - Square root
 - Estimate and draw inferences about differences in transformed costs



34

Estimates and Inferences Not Necessarily Applicable to Sample (Arithmetic) Mean

- Goal is to use estimates and inferences of untransformed costs to estimate and draw inferences about differences in untransformed costs
 - Estimation: Simple exponentiation of mean of log costs results in geometric mean, a downwardly biased estimate of arithmetic mean
 - Need to apply smearing factor
 - Inference: On retransformed scale, inferences about log of costs translate into inferences about differences in geometric mean, not arithmetic mean

Raw Cost	Group 2	Group 3
Obs: 1	15	35
2	45	45
3	87	67
Arith mean	49	49
Log of arithmetic mean	3.8918203	3.8918203
Geometric mean 📲	38.8694	47.2554
Log Cost		
Obs: 1	2.708050	3.555348
2	3.806663	3.806663
3	4.465908	4.204696
Arithmetic mean of logs	3.660207	3.855568
Exp ^(mean In)	38.8694	47.2554

Downward Bias of Geometric Mean

- Exponentiation of mean of logs yields geometric mean
- In presence of variability in costs, geometric mean downwardly biased estimate of arithmetic mean
 - All else equal, greater variance, skewness, or kurtosis, greater downward bias
 - e.g., $(25 * 30 * 35)^{0.333} = 29.7196$ $(10 * 30 * 50)^{0.333} = 24.6621$
 - $(5 * 30 * 55)^{0.333} = 20.2062$
 - (1 * 30 * 59)^{0.333} = 12.0664
- "Smearing" factor attempts to eliminate bias from exponentiation of mean of logs

38

Retransformation Of Log Of Cost (I)

• Duan's common smearing factor:

$$\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(Z_i - \hat{Z}_i)}$$

- where in univariate analysis, \hat{z}_i = group mean
- Most appropriate when treatment group variances are equivalent

Ret	ransform	ation Of Lo	og Of Cost	(II)
Group	Observ	ln	ຊ− Â	e ^(z, - 2,)
2	1	2.708050	9521568	0.385908
2	2	3.806663	.1464555	1.157723
2	3	4.465908	.805701	2.238265
Mean, 2		3.660207		
3	1	3.555348	3002198	0.740655
3	2	3.806663	0489054	0.952271
3	3	4.204693	.3491249	1.417826
Mean, 3		3.855568		
Smear (mean, 2&3)			<	1.148775

Retransfo	ormation form	ulas		
	E(Ī	(₂) = 0	$\Phi e^{(\overline{Z}_2)}$	
	E(Ÿ	(3) = 0	$\Phi e^{(\overline{Z}_3)}$	
Retransfo	ormation			
Group	Φ		e ^{In}	Predicted Cost
2	1.148775	х	38.8694	44.7
3	1.148775	х	47.2554	54.3

41

Common Smearing Retransformation (II)

- Why are retransformed subgroup-specific means -- 44.7 and 54.3 -- so different from untransformed subgroup means of 49?
- Because standard deviations of subgroups' logs are substantially different

SD₂ = 0.8880; SD₃ = 0.3274

- Larger standard deviation for group 2 implies that compared with arithmetic mean, its geometric mean has greater downward bias than does geometric mean for group 3
- Thus, multiplication of 2 groups' geometric means by a common smearing factor cannot give accurate estimates for both groups' arithmetic means

Subgroup-specific Smearing Factors (I)

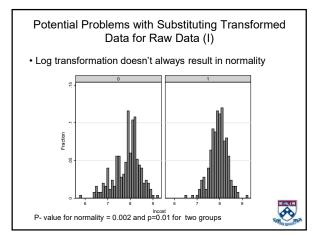
- Manning has shown that in face of differences in variance -- i.e., heteroscedasticity -- use of a common smearing factor in retransformation of predicted log of costs yields biased estimates of predicted costs
- Obtain unbiased estimates by use of subgroup-specific smearing factors
- Manning's subgroup-specific smearing factor:

$$\Phi_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} e^{(Z_{i} - \hat{Z}_{j})}$$

43

908 723
723
120
265
632
655
271
826
9173

Retransfo	ormation formu	ulas		
	$E(\overline{Y}_2$) = Φ	$\mathbf{p}_2 \mathbf{e}^{(\overline{\mathbf{Z}}_2)}$ $\mathbf{p}_3 \mathbf{e}^{(\overline{\mathbf{Z}}_3)}$	
	$E(\overline{Y}_3$) = Ф	$e_{3} e^{(\bar{Z}_{3})}$	
Retransfo	ormation			
C	Φi		e ^{In}	Predicted Cost
Group	T			
2	1.260632	x	38.8694	49.00



Subgroup-specific Smearing Retransformation (II)

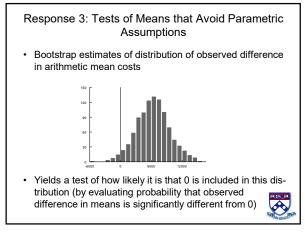
- All else equal, in face of differences in variance (or skewness or kurtosis), use of subgroup-specific smearing factors yields unbiased estimates of subgroup means
- Use of separate smearing factors eliminates efficiency gains from log transformation, because cannot assume p-value derived for log of cost applies to arithmetic mean of cost

46

47

Potential Problems with Substituting Transformed Data for Raw Data (II)

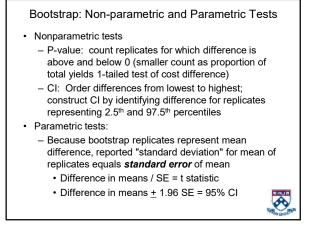
- P-value from t-test of log cost directly applies to difference in log of cost
- Generally also applies to difference in geometric mean of cost
 - Observe similar p-values for difference in log and difference in geometric mean
- P-value for log may or may not be directly applicable to difference in arithmetic mean of untransformed cost

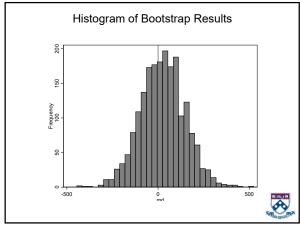


Potential Problems with Substituting Transformed Data for Raw Data (III)

- Applicability of p-value for log to difference in arithmetic mean of untransformed cost depends on both distributions of log being normal and having equal variance and thus standard deviation
 - If log normally distributed and variances equal, inferences about difference in log generally applicable to difference in arithmetic mean
 - If log either not normally distributed or variances unequal, inferences about difference in log generally not applicable to difference in arithmetic mean

49




50

Implementation of Bootstrap

- Random draw with replacement from each treatment group (thus creating multiple samples)
- · Calculate difference in mean for each sample

53

Nonparametric Bootstrap and Normality

- Nonparametric bootstrap does not depend on normality, so there is no violation of assumptions, but...
- If sample median has smaller relative bias than sample mean, may be better to use median whether sample mean is analyzed parametrically or nonparametrically

	Group 0	Group 1
Arith Mean	3015	3040
Std. Dev.	1582.802	1168.737
Quantiles		
5%	899	1426
25%	1819	2226
50%	2825.5	2900.5
75%	3752	3604
95%	6103	5085
Skewness	1.03501	1.525386
Kurtosis	4.910192	9.234913
Geom Mean	2600.571	2835.971
Mean In	7.8634864	7.9501397
SD In	.57602998	.37871479
Obs	250	250

Difference in	Cost
SUMMARY TABLE	P-value 95% CI
DIFFERENCE IN ARITHMETIC MEAN COST:	25.00 SE: 124.44
t-test, difference in means:	0.8409 -220 to 270
nonparametric BS, diff in means:	0.8600 -218 to 275
Wilcoxan rank-sum:	0.3722
Kolmogorov-Smirnov:	0.0017
t-test, difference in logs:	0.05
transformation to normal:	Sqrt
t-test, transformed variable:	0.2907
test for heteroscedasticity:	0.0000

56

Why Do Different Statistical Tests Lead To Different Inferences?

- Tests are evaluating differences in different statistics
 - T-test of untransformed costs: Cannot infer that arithmetic means differ
 - Bootstrap: Same (lack of) inference without normality assumption
 - Wilcoxon rank-sum test: Same inference, but had
 - medians differed, p-value would have been significant - T-test of log costs: Can infer means of logs - and thus
 - geometric means differ – Kolmogorov-Smirnov test: Can infer distributions
 - differ (but not necessarily means or medians)

Summary, Univariate Analysis

- Want statistic that provides best estimate of population mean
 - Because mean * N is best estimate of what gainers gain and losers lose
- Best refers to a measure of error that incorporates both bias and variability
- In face of skewness:
 - Sample means less biased
 - Sample median often less variable
- Transformation/retransformation of limited value in presence of heteroscedasticity

58

Multivariable Analysis Of Economic Outcomes (I)

- Even if treatment is assigned in a randomized setting use of multivariable analysis may have added benefits:
 - Improves power for tests of differences between groups (by explaining variation due to other causes)
 Facilitates subgroup analyses for cost-effectiveness (e.g., more/less severe; different countries/centers)
 - Variations in economic conditions and practice pattern differences by provider, center, or country may have a large influence on costs and randomization may not account for all differences
 - Added advantage: Helps explain what is observed (e.g., coefficients for other variables should make sense economically)

59

Nonrandom Assignment

 If treatment not randomly assigned, multivariable analysis necessary to adjust for observable imbalances between treatment groups, but may NOT be sufficient

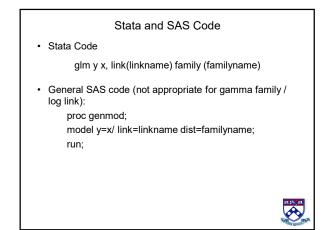
Multivariable Techniques Used for Analysis of Cost

- · Common techniques
 - Ordinary least squares regression predicting costs after randomization (OLS)
- Ordinary least squares regression predicting log transformation of costs after randomization (log OLS)
- Generalized Linear Models)GLM)
- · Other techniques:
 - Generalized Gamma regression (Manning et al., Journal of Health Economics, 2005)
 - Extended estimating equations (Basu and Rathouz, Biostatistics 2005)

61

Generalized Linear Models (GLM)

- · GLM models:
 - Don't require normality or homoscedasticity,
 - Evaluate log of mean, not mean of logs, and thus
 Don't have problems related to retransformation from scale of estimation to raw scale
- To build them, must identify "link function" and "family" (based on data)



62

GLM Relaxes OLS Assumptions

- Ability to choose among different links relaxes assumption that E(y/x) = Σβ_iX_i (OLS) or E(In(y)/x)=Σβ_iX_i (Log OLS)
- Ability to choose among different families relaxes
 assumption of constant variance
 - Gauss: constant variance
 - Poisson: variance proportional to mean
 - Gamma: variance proportional to square of mean
 - Inverse gauss: variance proportional to cube of mean

Link Function

- Link function directly characterizes how linear combination of predictors is related to prediction on original scale
- Examples of links include:
 - Identity Link: $\hat{Y}_i = \beta_i X_i$ (used in OLS)
 - log link: $\hat{Y}_i = \exp^{(\beta_i | X_i)}$ (NOT used in log OLS)
- GLM with log link differs from log OLS ($In(E(y/x))=X\beta$)

65

Family

- Specifies distribution that reflects mean-variance relationship
- Currently, families for continuous data available in Stata include:
 - Gaussian (constant variance)
 - Poisson (variance is proportional to mean)
 - Gamma (variance is proportional to square of mean)
 - Inverse gaussian (variance is proportional to cube of mean)
- Use of poisson, gamma, and inverse Gausian families relaxes assumption of homoscedasticity

GLM Comments (I)

Advantages

- Relaxes normality and homoscedasticity assumptions
- Consistent even if not correct family distribution
 - Choice of family only affects efficiency if link function and covariates are specified correctly
- Gains in precision from estimator that matches data generating mechanism
- Avoids retransformation problems of log OLS models

67

GLM Comments (II)

Disadvantages

- Can suffer substantial precision losses
 - If heavy-tailed (log) error term, i.e., log-scale residuals have high kurtosis (>3)
 - · If family is misspecified

68

Retransformation

- GLM avoids problem that simple exponentiation of results of log OLS yields biased estimates of predicted costs
- GLM does not avoid other complexity of nonlinear retransformations (also seen in log OLS models):
 - On transformed scale, effect of treatment group is estimated holding all else equal; however, retransformation (to estimate costs) reintroduces covariate imbalances

A

Recycled Predictions

- For multiplicative models (e.g., log or logit), shouldn't use means of covariates when making predictions
 - Mean of retransformations does not equal retransformation of mean
- Instead use method of recycled predictions to create an identical covariate structure for two groups by:
 - Coding everyone as if they were in treatment group 0 and predicting $\hat{Z}_{_{i0}}$
 - Coding everyone as if they were in treatment group 1 and predicting $\hat{Z}_{_{1}}$
- Since Stata 11, can be implemented in Stata with "margins" command

70

What is "margins" Command Doing?

- · Margins command equivalent to
 - Generating a temporary 0/1 variable that equals the treatment status variable
 - Assigning 0s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₀, the predicted cost had everyone been in treatment group 0
 - Assigning 1s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₁, the predicted cost had everyone been in treatment group 1

71

Margins

glm cost i.treat dissev bl* race, link(log) family(gamma) margins treat Predictive margins Number of obs = 500Model VCE : OIM : Predicted mean cost, predict() Expression _____ _____ Delta-method 1 | Margin Std Err z P>|z| [95% Conf. Intl] treat | 0 | 2963.182 75.08546 39.48 0.000 2816.87 3111.199 1 | 3099.562 79.74378 38.87 0.000 2943.17 3255.76 3099.56 - 2963.18 = 136.38 difference

Special Cases (I)

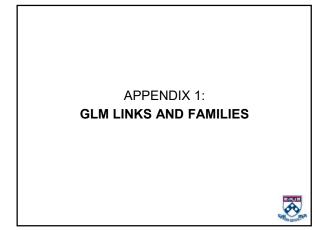
- A substantial proportion of observations have 0 costs
 - May pose problems to regression models
 - Commonly addressed by developing a "two-part" model in which first part predicts probability that costs are zero or nonzero and second part predicts level of costs conditional on there being some costs
 - 1st part : Logit or probit model
 - 2nd part : log OLS or GLM model

73

Special Cases (II)

Censored costs

- Results derived from analyzing only completed cases or observed costs are often biased
- Need to evaluate "mechanism" that led to missing data and adopt a method that gives unbiased results in face of missingness


74

Three Appendices

- 1) GLM links and families
- 2) % Interpretation of log OLS and log/gamma GLM

QALY Analysis

Link Function

- Link function directly characterizes how linear combination of predictors is related to prediction on original scale
- Examples of links include:
 - Identity Link: $\hat{Y}_i = \beta_i X_i$ (used in OLS)
 - log link: $\hat{Y}_i = \exp^{(\beta_i | X_i)}$

77

Log Link

- · Log link is most commonly used in literature
- When we adopt log link, we are assuming:
 - In(E(y/x))=Xβ
- GLM with a log link differs from log OLS in part because in log OLS, we are assuming:
 - E(In(y)/x)=Xβ
- In(E(y/x) ≠ E(In(y)/x)
 i.e. log of mean
 [®] mean of log costs

Variable	Group 1	Group 2	
Observations		·	_
1	15	35	
2	45	45	
3	75	55	
Arithmetic mean	45	45	
Log, arith mean cost	3.806662	3.806662 *	
Natural log			
1	2.70805	3.555348	
2	3.806662	3.806662	
3	4.317488	4.007333	_
Arith mean, log cost	3.610734	3.789781 †	

Variable	Coefficient	SE	z/T	<i>p</i> value
GLM, gami	ma family, log lir	nk		
Group 2 🕻	0.000000 💙	0.405730	0.00	1.000
Constant	3.806662	0.286894	13.27	0.000
Log OLS				
Group 2 🕻	0.179048	0.492494	0.36	0.74
Constant	3.610734	0.348246	10.32	0.000

coe		on for lo	nterpretat g OLS and able in fac	GLM lo	00	
0	0	00	00	01*	Log	Log/
C ₀	C ₁	SD_0	SD ₁	Obs *	OLS†	Gamma †
~8000	~62,000	2087	15,305	6.39	2.00	2
~8000	~62,000	2087	41,710	6.39	1.84	2
~8000	~62,000	2087	52,557	6.39	1.75	2
~8000	~62,000	2087	118,332	6.39	1.25	2
~8000	~62,000	2087	264,050	6.35	0.50	1.99
* (C ₁ -	C ₀) / C ₀ ; †	- Rx coe	fficient fro	m regre	ssion	

 % Interpretation? % interpretation sensitive to magnitude of difference in means even when there is raw scale homoscedasticity 						
C ₀	C ₁	SD ₀	SD ₁	Obs *	Log OLS†	Log/ Gamma †
8361	9191	66.85	66.85	0.09	0.10	0.09
8361	16,531	66.85	66.85	0.99	0.71	0.69
8361	24,960	66.85	66.85	1.99	1.12	1.09
8361	41,561	66.85	66.85	4.12	1.63	1.60
8361	74761	66.85	66.85	9.93	2.42	2.39
* (C ₁ -	C ₀) / C ₀ ;	† Rx coel	ficient fro	m regre	ssion	

Power Link Function

- Stata's power link provides a flexible link function
- It allows generation of a wide variety of named and unnamed links, e.g.,
 - power 1 = Identity link; $\hat{u}_i = B_i X_i$
 - power .5 = Square root link; $\hat{u}_i = (B_i X_i)^2$
 - power .25: $\hat{u}_i = (B_i X_i)^4$
 - power 0 = log link; $\hat{u}_i = \exp(BiXi)$
 - power -1 = reciprocal link; $\hat{u}_i = 1/(B_iX_i)$
 - power -2 = inverse quadratic; $\hat{u}_i = 1/(B_i X_i)^{0.5}$

83

Selecting a Link Function

- There is no single test that identifies appropriate link
- Instead can employ multiple tests of fit
 - Pregibon link test checks linearity of response on scale of estimation
 - Modified Hosmer and Lemeshow test checks for systematic bias in fit on raw scale
 - Pearson's correlation test checks for systematic bias in fit on raw scale
 - Ideally, all 3 tests will yield nonsignificant p-values

Family

- Specifies distribution that reflects mean-variance relationship
- Currently, families for continuous data available in Stata include:
- Gaussian (constant variance)
- Poisson (variance is proportional to mean)
- Gamma (variance is proportional to square of mean)
- Inverse gaussian (variance is proportional to cube of mean)
- Use of poisson, gamma, and inverse Gausian families relaxes assumption of homoscedasticity

85

•

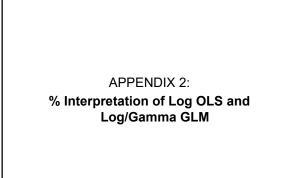
Selecting a Family

- Modified Parks test is a "constructive" test that
 recommends a family given a particular link function
- Implemented after GLM regression that uses particular link
- test predicts square of residuals (res²) as a function of log of predictions (Inyhat) by use of a GLM with a log link and gamma family to
 - Stata code
 - glm res² lnyhat,link(log) family(gamma), robust
- If weights or clustering are used in original GLM, same weights and clustering should be used for modified Park test

86

Recommended Family, Modified Park Test

- · Recommended family derived from coefficient for Inyhat:
 - If coefficient ~=0, Gaussian
 - If coefficient ~=1, Poisson
 - If coefficient ~=2, Gamma
 - If coefficient ~=3, Inverse Gaussian or Wald
- · Given absence of families for negative coefficients:


FITTED MODEL: Link = Log ; Fami	ly = Gamma			
Results, Modified Park Test (for Family)				
Coefficient: 1.5912				
Family, Chi2, and p-value in de	scending order of I	ikelihood		
Family	Chi2	P-value		
Gamma:	1.9560	0.1619		
Poisson:	4.0897	0.0431		
Inverse Gaussian or Wald	23.2272	0.0000		
Gaussian NLLS:	29.6281	0.0000		
Results of tests of GLM Log link				
Pearson Correlation Test:		.2460		
Pregibon Link Test:		.1273		
Modified Hosmer and Lemes	show:	.6199		

Summary: GLM Analysis of Cost				
	ld/Gau	Id/Pois	Log/Gam	0.65/Pois
Pearson	1.0000	0.8818	0.2460	0.9027
Pregibon	0.8913	0.7021	0.1273	0.7469
Mod H&L	0.3487	0.5134	0.6199	0.5870
Summary†	0.4360	0.3394	1.4746	0.2441
Difference	22	113	135	88
P-value	0.84	0.26*	0.21	0.39*
* P-value de	rived from bo	ootstrap		
† Σ _i (1-p _i)²				

	Pearson	Pregibon	H&M
EQ			
Log/Gamma	.047	.461	.002
-1/Gauss	.566	.405	.0004
Hospital Cost			
Log/Gamma	.654	.845	.000
1/lgauss	.884	.844	.038
ED visit cost			
Log/Gamma	.583	.436	.526
.6/Gamma	.912	.983	.971

Variable	% Interpretat	Group 2	Group 3	
Raw cost / Log cost	p -			
Obs: 1	12.975 / 2.563	19.4625 / 2.968	38 / 3.638	
2	25 / 3.219	37.5 / 3.624	40.547 / 3.702	
3	52.025 / 3.952	78.0375 / 4.357	56.453 / 4.033	
Mean / Log mean	30 / 3.2445	45 / 3.6500	45 / 3.7912	
SD / SD Log	20 / 0.6947	30 / 0.6947	10 / 0.2123	
 SD / SD Log 20 / 0.6947 30 / 0.6947 10 / 0.2123 Groups 1 and 2 differ in SD of cost (20 vs 30) (heteroscedasticity on cost scale) but share same SD of logs (0.6947) (homoscedasticity on log scale) Groups 2 and 3 and 1 and 3 differ in both SD of cost (30 vs 10 and 20 vs 10) and SD of log cost (0.6947 vs 0.2123) (heteroscedasticity on cost scale and log scale) 				

\cap	2
ч	/
-	-

Failure of % Interpretation of	of Log OLS
--------------------------------	------------

G2 vs G1	G3 vs G1	G3 vs G2
45 vs 30	45 vs 30	45 vs 45
50%	50%	0%
0.405	0.547	0.141
0.50	0.727	0.152
	45 vs 30 50% 0.405	45 vs 30 45 vs 30 50% 50% 0.405 0.547

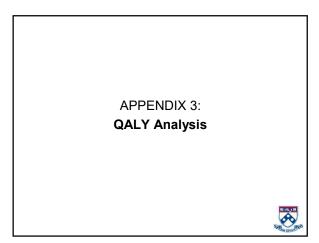
- For difference between G2 vs G1, 0.405 coefficient from log OLS predicting log cost ≠ observed 50% difference
 But exp^(0.405) - 1 does (0.5 vs 50%)
- For differences between G3 vs G1 and G3 vs G2, neither coefficients from log OLS (0.547 and 0.141) nor exp^(coef)-1 (0.727 and 0.152) equal observed % differences (50% and 0%)

% Interpretation	of GLM With Lo	g Link/Gan	nma Family
Variable	G2 vs G1	G3 vs G1	G3 vs G2

valiable	62 15 61	63 48 61	G3 VS G2
Group means	45 vs 30	45 vs 30	45 vs 45
Obs % Mean Diff, Cost	50%	50%	0%
GLM Coef, Cost (log/gam)	0.405	0.405	0.0
exp ^(coef) - 1	0.50	0.50	0.0

 For differences between G2 vs G1 and G3 vs G1, 0.405 coefficient from GLM predicting cost ≠ observed 50% difference

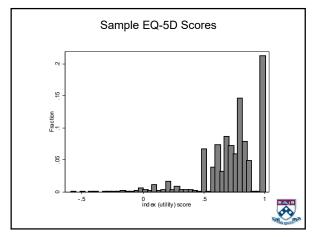
- But $exp^{(0.405)}$ - 1 does (0.5 vs 50%)


- For difference between groups G3 vs G2, both coefficient and $exp^{(0)}$ - 1 equal observed difference (0.0 vs 0%)

94

Summary, Percentage Interpretation

- · For log OLS:
 - Percentage interpretation of coefficient generally unreasonable
 - Percentage interpretation of exp^(coef)-1 reasonable when strict homoscedasticity on log scale
 - Percentage interpretation of exp^(coef)-1 less/un reasonable when log SDs differ
- For GLM with log link and gamma family:
 - Percentage interpretation of coefficient generally unreasonable
 - Percentage interpretation of exp^(coef)-1 reasonable whether or not SDs on log scale are identical



QALY Evaluation

- While substantial attention has been paid to models for evaluation of cost, substantially less has been paid to models for evaluation of QALYs
- QALY distribution shares certain complicating features with costs, but also has its own complicating features
 - Predictions should be confined to theoretical range of preference assessment instrument (e.g., -0.594 and 1.0 for EQ-5D)
 - Long, heavy LEFT tails
 - (Particularly for pre-scored instruments) Often multimodal (see Figure on next slide)
 - (Commonly) Large fraction of 1s

97

98

Multivariable Approaches

- There are beginnings of a literature on multivariable approaches
 - OLS (or GLM with identity link and gauss family) probably commonest
 - Alternatives
 - GLM with family (and link) diagnostics
 - GLM with a logit link and binomial 1 family or it's equivalent, beta regression (need specialized code for Stata), (Basu and Manca)
 - Adjusted limited dependent variable models (Alava et al.)
- While we demonstrate some of these methods, more work is required before we will be able to identify best practice

Implemented Models

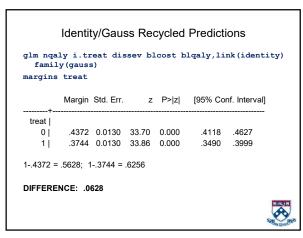
- Start with GLM gauss/identity
 - Evaluate GLM diagnostics
 - If necessary, reestimate GLM with better fitting family
- Also assess GLM gamma/log
 - Evaluate GLM diagnostics
 - If necessary, reestimate GLM with better fitting family

100

Common Starting Point: GLM with Gauss/Identity							
glm qal family(y i.treat c gauss)	lissev blcc	ost blqa	ly, lin	(identity)		
	Variance function: $V(u) = 1$ [Gaussian] Link function: $g(u) = u$ [Identity]						
Log like	Log likelihood = 85.080395 AIC3203216 BIC -3055.401						
qaly	Coef	Std Err	z	P> z	95% CI		
1.treat	.0627749	.0183515	3.42	0.001	.0268067 .098743	2	
dissev	1512017	.0831731	-1.82	0.069	314218 .0118147		
blcost	0000359	.0000121	-2.96	0.003	0000600000122	2	
blqaly	.207374	.0633239	3.27	0.001	.0832614 .3314867		
_cons	.511092	.0620345	8.24	0.000	.3895067 .6326773		
eeict2011.d	eeid2011.dta						

1	n	1
т	υ	т.

GLM DIAGNOSTICS,	Identity/Ga	iuss	
FITTED MODEL: Link = Identity ; Fami	ily = Gaussian		
Results, Modified Park Test (for Famil	ly)		
Coefficient:929485			
Family, Chi2, and p-value in desce	nding order of I	ikelihood	
Family	Chi2	P-value	
Gaussian NLLS:	4.2582	0.0391	
Poisson:	18.3496	0.0000	
Gamma:	42.2987	0.0000	
Inverse Gaussian or Wald	76.1054	0.0000	
Results of tests of GLM Identity link			
Pearson Correlation Test:		1	
Pregibon Link Test:		.6741	
Modified Hosmer and Lemesho	w:	.8335	-
icl2011 dta			ARE

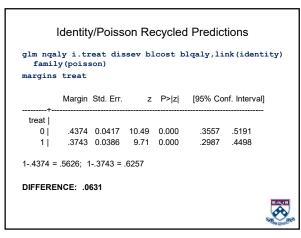

Troubling Findings


- Coefficient on modified Park test is negative (we don't have any families that are negative) and p-value for named families are all significantly rejected
- When confronted with coefficient < -0.5, consider subtracting all observations from maximum theoretically possible observation (e.g., 1.0 for most, if not all, instruments)

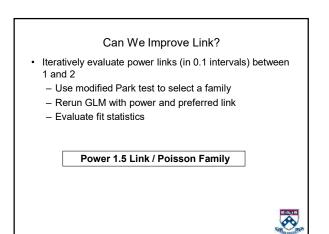
gen nqaly=1-c sum qaly nqal					
Variable	Obs	Mean	Std. Dev.	Min	Max
qaly nqaly	500 500	.5941653 .4058347	.2121148 .2121148	.05679 .03178	.96882 .94321

103

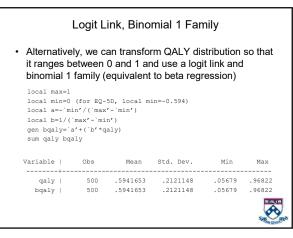
Estimate NQALY, GLM with Gauss/Identity								
	glm nqaly i.treat dissev blcost blqaly, link(identity) family(gauss)							
Variance function: V(u) = 1 [Gaussian] Link function: g(u) = u [Identity]								
Log likel	Log likelihood = 85.080395 AIC3203216 BIC -3055.401							
nqaly	Coef	Std Err	Z	P> z	95% CI			
1.treat	0627749	.0183515	-3.42	0.001	09874320268067			
dissev	.1512017	.0831731	1.82	0.069	0118147 .314218			
blcost	.0000359	.0000121	2.96	0.003	.0000122 .000060			
blqaly	207374	.0633239	-3.27 0.00133148670832614					
_cons	.488908	.0620345	7.88	0.000	.3673227 .6104933			
eeict2011 dt								

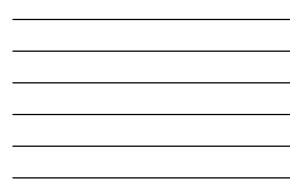


GLM DIAGNOSTICS, I	ldentity/Ga	iuss	
FITTED MODEL: Link = Identity ; Famil	ly = Gaussian		
Results, Modified Park Test (for Family	y)		
Coefficient: .686724			
Family, Chi2, and p-value in descer	nding order of I	ikelihood	
Family	Chi2	P-value	
Poisson	0.9443	0.3312	
Gaussian NLLS:	4.5374	0.0332	
Gamma:	16.5942	0.0000	
Inverse Gaussian or Wald	51.4871	0.0000	
Results of tests of GLM Identity link			
Pearson Correlation Test:		1	
Pregibon Link Test:	.6741		
Modified Hosmer and Lemeshow	N:	.8335	HARAH
eeict2011.dta			Standard Standard


Change Family to Poisson and Rerun Model								
	glm nqaly i.treat dissev blcost blqaly, link(identity) family(poisson)							
	Variance function: V(u) = u [poisson] Link function: q(u) = u [Identity]							
Log likelihood = -335.2046527 BIC -3023.244								
nqaly	Coef	Std Err	z	P> t	95%	o Cl		
1.treat	06313	.0566142	-1.12	0.265	1740918	.0478318		
dissev	.16252	.2609842	0.62	0.533	3489997	.6740397		
blcost	.0000373	.0000387	0.96	0.335	0000385	.0001132		
blqaly	199954	.1926091	-1.04	0.299	5774608	.1775532		
_cons	.477935	.190924	2.50	0.012	.1028309	.8512394		
eeict2011.dt	eeict2011.dta							

FITTED MODEL: Link = Identity ; Fam	ilv = Poisson	
Results, Modified Park Test (for Fami		
Coefficient: .703074	,	
Family, Chi2, and p-value in desce	nding order of li	ikelihood
Family	Chi2	P-value
Poisson	0.8796	0.3483
Gaussian NLLS:	4.9314	0.0264
Gamma:	16.7804	0.0000
Inverse Gaussian or Wald	52.6339	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		.9396
Pregibon Link Test:		.6961
Modified Hosmer and Lemesho	w:	.8949

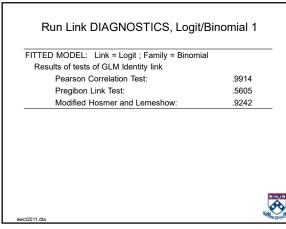




Power 1.5 Link / Poisson Family							
glm nqal	glm nqaly i.treat dissev blcost blqaly, link(power 1.5) family(poisson)						
	Variance function: $V(u) = u$ [Poisson] Link function: $g(u) = u^{(1.5)}$ [Power]						
Log likel	Log likelihood = -335.199289 AIC 1.360797 BIC -3023.255						
nqaly	Coef	Std Err	z	P> z	95%	5 CI	
1.treat	059525	.053554	-1.11	0.266	164488	.045439	
dissev	.156198	.244879	0.64	0.524	323756	.636152	
blcost	.000036	.000037	0.97	0.331	000037	.000109	
blqaly	185844	.180880	-1.03	0.304	540361	.168674	
_cons	.322960	.180606	1.78	0.074	031021	.676941	
eeict2011.dt	eeict2011.dta						

Power 1.5/Poisson Recycled Predictions									
glm nqaly i.treat dissev blcost blqaly,link(power 1.5) family(poisson)									
margins	treat								
+	Margin	Std. Err.	z	P> z	[95% Co	nf. Interval]			
treat									
0	.4371	0.0415	10.53	0.000	.3557	.5186			
1	.3745	0.0384	9.75	0.000	.2992	.4498			
14371 =	14371 = .5629; 13745 = .6255								
DIFFEREN	NCE: .00	626							

GLM DIAGNOSTICS, Po	wer 1.5/Pc	oisson
FITTED MODEL: Link = Power 1.5; Far	nily = Poisson	
Results, Modified Park Test (for Family	/)	
Coefficient: .719996		
Family, Chi2, and p-value in descer	nding order of I	ikelihood
Family	Chi2	P-value
Poisson	0. 7756	0.3785
Gaussian NLLS:	5.1282	0.0235
Gamma:	16.2080	0.0001
Inverse Gaussian or Wald	51.4255	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		.9939
Pregibon Link Test:		.9578
Modified Hosmer and Lemeshov	v:	.9821



GLM with Binomial 1/Logit							
glm bqa 1)	glm bqaly i.treat dissev blcost blqaly, link(logit) family(binomial 1)						
Link fun	Variance function: V(u)=u*(1-u) [Bernoulli] Link function: g(u)=ln(u/1-u) [Logit] AIC. 97588						
Log likel	Log likelihood = -238.9699913 BIC -2050.859						
nqaly	Coef	Std Err	Z	P> z	95% CI		
1.treat	.2626131	.1834617	1.43	0.152	0969653	.6221914	
dissev	6328458	.832264	-0.76	0.447	-2.264053	.9983617	
blcost	0001494	.0001208	-1.24	0.216	0003862	.0000875	
blqaly	.8675488	.6338201	1.37	0.171	3747157	2.109813	
_cons	.0373004	.6190775	0.06	0.952	-1.176069	1.25067	
eeict2011.dt	la						

Logit/Binomial 1 Recycled Predictions								
	ly i.tr y(binor		sev bl	cost b	lqaly,li:	nk(logi	t)	
margins	treat							
+	Margin	Std. Err.	z	P> z	[95% Co	nf. Interva	l]	
treat							-	
0	.5628	0.0312	18.02	0.000	.5016	.6441		
1	.6254	0.0305	20.53	0.000	.5657	.6852		
DIFFERE	NCE: .0	626						

