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Outline

• Univariate analysis

– Policy relevant parameter for CEA

– Cost data 101

– T-tests

– Response to violation of normality

– Primer on log cost

– Why do different statistical tests lead to different 
inferences?

• Multivariable analysis

– Common techniques

– General linear models (GLM)

Policy Relevant Parameter for CEA

• In welfare economics, projects cost-beneficial if winners 
from any policy gain enough to be able to compensate 
losers and still be better off themselves

• Decision makers interested in total program cost/budget

• Policy relevant parameter quantifies how much losers 
lose, or cost, and how much winners win, or benefit
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Policy Relevant Parameter for CEA (2)

• Whether or not data are skewed, sample mean * N 
provides unbiased estimate of population mean * N

– Represents unbiased estimate of gains and losses

• When data are skewed, Median * N is biased estimate of 
gains and losses

Initial advantage: sample mean (aka arithmetic mean)

Policy Relevant Parameter for CEA (3)

• Distribution of mean generally more variable than 
distribution of the median

Potential advantage: median

Cost Data 101

• Commonly right-skewed (i.e., long, heavy, right tails)

• Data tend to be skewed because:

– Can have 0 costs, but not negative costs

– Most severe cases may require substantially more 
services than less severe cases

– Certain very expensive events occur in relatively 
small number of patients

• A minority of patients are responsible for a high 
proportion of health care costs
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Typical Distribution Of Cost Data

Sk=1.04; Ku=4.9 Sk=1.52; Ku=9.2

Typical Distribution Of Cost Data (II)

• Heavy tails vs. "outliers“

– Distributions with long, heavy, right tails will have 
larger sample means than medians

Problem Not Related Solely to “Outliers”

• Distribution when 5 observations with cost > 7200 
(>3SD) are eliminated
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Full Sample Trimmed *

Group 0 Group 1 Group 0 Group 1

Mean 3015 3040 2927 3010

Median 2826 2901 2816 2885

* p = 0.003 and 0.000 for nonnormality of groups 0 and 
1, respectively

Means and Medians When 5 Observations with 
Cost > 7200 are Eliminated

“If the data are skewed, the mean       
doesn’t tell us anything”

Do you agree?

Current wisdom about using parametric 
tests of means in cases where data are 

skewed??
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??? Don’t analyze or report means ???

??? Analyze and report medians instead ???

What’s rationale for analyzing and reporting 
medians instead of means??

• Can’t be because difference in sample means is a more 
biased estimate of difference in population means

– Sample mean is unbiased while difference in sample 
medians is biased

Rationales for Analyzing and Reporting Medians (1) ??
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Rationales for Analyzing and Reporting Medians (2) ??

• Substitute nonparametric statistical tests for parametric 
tests because:

– Data are skewed and Student’s t-test assumes 
normality?

– Data are skewed and OLS regression assumes 
normality of residuals?

– In presence of skewness, distribution of mean likely to 
be much more variable (i.e., less efficient) than 
distribution of median?

• How important is efficiency of a biased estimator?

– Others ???

Univariate Analysis: Parametric Tests Of Raw Means

• Usual starting point: T-tests and one way ANOVA

– Used to test for differences in arithmetic/sample 
means of total costs, QALYS, etc.

– Makes assumption that costs are normally distributed

– Normality assumption routinely violated for cost (and 
preference score) data, but t-tests have been shown 
to be robust to violations of this assumption when:

• Samples moderately large

• Samples are of similar size and skewness

• Skewness is not too extreme

– What is meant by “moderately large,” “similar size and 
skewness,” and “not too extreme”?

Steps in Performing a T-test

• Evaluate whether or not outcome is normally distributed

– sktest, joint test of skewness and kurtosis

– Alternative tests:

• swilk

• sfrancia

• Evaluate whether or not standard deviations of costs for 
treatment groups are similar

• Perform t-test and interpret it in relationship to prior two 
tests
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Results of Tests of Normality and Equivalence of 
S.D. of Costs

Test p-value Conclusion

Normality

sktest, group 0 0.0 Failed

sktest, group 1 0.0 Failed

Equality of standard deviations

sdtest  0.00 Failed         

Results of T-Test

Two-sample t test with unequal variances
-------------------------------------------------------------------
Group | Obs    Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
------+------------------------------------------------------------

0 | 250    3015    100.1052    1582.802    2817.839    3212.161
1 | 250    3040    73.91742    1168.737    2894.417    3185.583

------+------------------------------------------------------------
comb  | 500  3027.5    62.15917    1389.921    2905.374    3149.626
------+------------------------------------------------------------
diff |         -25    124.4381               -269.5399    219.5399

-------------------------------------------------------------------
diff = mean(0) - mean(1)                           t =  -0.2009

Ho: diff = 0          Satterthwaite's degrees of freedom =  458.304

Ha: diff < 0            Ha: diff != 0           Ha: diff > 0
Pr(T < t) = 0.4204    Pr(|T| > |t|) = 0.8409    Pr(T > t) = 0.5796

ttest cost, by(treat) unequal

Responses To Violation Of Normality Assumption

• Adopt nonparametric tests of other characteristics of 
distribution that are not as affected by nonnormality of 
distribution (“biostatistical” approach)

• Transform data to approximate normal distribution (e.g., 
Stata “ladder” command) (“classic econometric” 
approach)

• Adopt tests of arithmetic means that avoid parametric 
assumptions (most recent development)
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Response 1: Non-parametric Tests of Other 
Characteristics of Distribution

• Rationale: Can analyze characteristics that are not as 
affected by nonnormality of distribution

– Wilcoxon rank-sum test

– Kolmogorov-Smirnov test

• Variability of difference in sample means is often larger 
than variability in difference in sample medians

• Empirical question whether:

Relative Bias Rationale for Use of Medians
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Are Sample Means Always Best Estimator?

• When cost data are sufficiently nonnormal, relative bias 
for median can be smaller than relative bias for 
arithmetic mean
– e.g., can be shown in simulation that when log of cost 

is normally distributed, occurs only when sample 
sizes are small and true difference between mean 
and median is small

• Given that in actual data we never know truth, difficult to 
determine when other parameters will have lower 
relative bias than sample means
– In part because degrees of both bias and skewness 

have to be taken into account

Wilcoxon Rank-Sum

• Estimates probability that a randomly selected patient 
from one treatment group has a higher cost than a 
randomly selected patient from another treatment group 
(Note:  area under ROC curve is equivalent to p-value of 
Wilcoxon rank-sum test for a diagnostic test's scores)

• Referred to as a test of medians because frequency with 
which an Rx’s patients have larger cost is unrelated to 
size of difference between patients’ costs

– Rx 2 may be higher less of time, but when it is higher 
it may be much higher

Wilcoxon / Mann Whitney

Group Outcome Rank 0 > 1 1 > 0

1 16 10 5

1 14 9 5

0 9 8 3

0 8 7 3

0 7 6 3

0 6 5 3

1 5 4 1

0 4 3 2

1 3 2 0

1 2 1 0

Means:
6.8 vs 8.0

Medians:
7 vs 5

Rank sum:
29 vs 26

Times 
greater:
14 vs 11
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Rank-Sum Test,10 Observations

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

treat |      obs rank sum    expected
-------------+---------------------------------

0 |        5          29        27.5
1 |        5          26        27.5

-------------+---------------------------------
combined |       10          55          55

unadjusted variance       22.92
adjustment for ties        0.00

----------
adjusted variance         22.92

Ho: cost(treat==0) = cost(treat==1)
z =   0.313

Prob > |z| =   0.7540

ranksum cost, by(treat)

Rank-Sum Test, Hypothetical Cost Data Set

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

treat |      obs    rank sum    expected
-------------+---------------------------------

0 |      250     61183.5       62625
1 |      250     64066.5       62625

-------------+---------------------------------
combined |      500      125250      125250

unadjusted variance  2609375.00
adjustment for ties       -3.51

----------
adjusted variance    2609371.49

Ho: cost(treat==0) = cost(treat==1)
z =  -0.892

Prob > |z| =   0.3722

ranksum cost, by(treat)

Kolmogorov-Smirnov

• Test of difference in cumulative distribution function

• Estimates whether maximum absolute difference 
between two cumulative distribution function estimates 
are significant
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Cumulative Distribution

0 2625 5250 7875 10500

Cost

0

25

50

75

100

P
ro

po
rti

on

Group 0 Group 1

Kolmogorov-Smirnov Test

Two-sample Kolmogorov-Smirnov test for equality 
of distribution functions:

Smaller group      D       P-value Corrected
---------------------------------------------
0:                 0.1640    0.001
1:                -0.0640    0.359
Combined K-S:      0.1640    0.002     0.002

• Line 1 tests if group 0 has smaller values than group 1

• Line 2 tests if group 0 has larger values than group 1

• Line 3 provides a joint test

ksmirnov cost, by(treat)

Potential Problem with Testing Other 
Characteristics of Distribution

• Tests indicate that some measure of cost distribution 
differs between treatment groups, such as its shape or 
location, but not necessarily that arithmetic means differ

• Resulting p-values not necessarily applicable to 
arithmetic mean
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Response 2: Transform Data

• Transform costs so they approximate a normal 
distribution

– Common transformations

• Log (arbitrary additional transformations required if 
any observation equals 0)

• Square root

– Estimate and draw inferences about differences in 
transformed costs

Estimates and Inferences Not Necessarily 
Applicable to Sample (Arithmetic) Mean

• Goal is to use estimates and inferences of 
untransformed costs to estimate and draw inferences 
about differences in untransformed costs

– Estimation: Simple exponentiation of mean of log 
costs results in geometric mean, a downwardly 
biased estimate of arithmetic mean

• Need to apply smearing factor 

– Inference: On retransformed scale, inferences about 
log of costs translate into inferences about differences 
in geometric mean, not arithmetic mean

Primer On 
Log Transformation Of Costs
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Log Transformation of Cost

Raw Cost Group 2 Group 3

Obs:  1 15 35

2 45 45

3 87 67

Arith mean 49 49

Log of arithmetic mean 3.8918203 3.8918203

Geometric mean 38.8694 47.2554

Log Cost

Obs:  1 2.708050 3.555348

2 3.806663 3.806663

3 4.465908 4.204696

Arithmetic mean of logs 3.660207 3.855568

Exp(mean ln) 38.8694 47.2554

N

N
i

i = 1

Y

Downward Bias of Geometric Mean

• Exponentiation of mean of logs yields geometric mean

• In presence of variability in costs, geometric mean 
downwardly biased estimate of arithmetic mean

– All else equal, greater variance, skewness, or 
kurtosis, greater downward bias

– e.g., (25 * 30 * 35)0.333 = 29.7196

(10 * 30 * 50)0.333 = 24.6621

(5 * 30 * 55)0.333 = 20.2062

(1 * 30 * 59)0.333 = 12.0664

• “Smearing” factor attempts to eliminate bias from 
exponentiation of mean of logs

Retransformation Of Log Of Cost (I)

• Duan's common smearing factor:

where in univariate analysis,       = group mean

• Most appropriate when treatment group variances are 
equivalent

i i

N
(Z  - Z )

i=1

1
 = e

N
  ˆ

iẐ
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i îz - z i iˆ(z  - z )e

Retransformation Of Log Of Cost (II)

Φ

Group Observ ln

2 1 2.708050 -.9521568 0.385908

2 2 3.806663 .1464555 1.157723

2 3 4.465908 .805701 2.238265

Mean, 2 -- 3.660207 -- --

3 1 3.555348 -.3002198 0.740655

3 2 3.806663 -.0489054 0.952271

3 3 4.204693 .3491249 1.417826

Mean, 3 -- 3.855568 -- --
Smear 
(mean, 2&3)

1.148775

Common Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2

(Z )
3

E(Y ) =     e

E(Y ) =     e

 



Group Ф eln Predicted Cost

2 1.148775 x 38.8694 44.7

3 1.148775 x 47.2554 54.3

Common Smearing Retransformation (II)

• Why are retransformed subgroup-specific means -- 44.7 
and 54.3 -- so different from untransformed subgroup 
means of 49?

• Because standard deviations of subgroups' logs are 
substantially different

SD2 = 0.8880; SD3 = 0.3274

• Larger standard deviation for group 2 implies that 
compared with arithmetic mean, its geometric mean has 
greater downward bias than does geometric mean for 
group 3

• Thus, multiplication of 2 groups’ geometric means by a 
common smearing factor cannot give accurate estimates 
for both groups’ arithmetic means
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Subgroup-specific Smearing Factors (I)

• Manning has shown that in face of differences in 
variance -- i.e., heteroscedasticity -- use of a common 
smearing factor in retransformation of predicted log of 
costs yields biased estimates of predicted costs

• Obtain unbiased estimates by use of subgroup-specific 
smearing factors

• Manning's subgroup-specific smearing factor:

j

ij j

N
(Z  - Z )

j
i=1j

1
 = e

N
 

ˆ

Subgroup-specific Smearing Factors (II)

Φ2

Φ3

Group Observ ln

2 1 2.708050 -.9521568 0.385908

2 2 3.806663 .1464555 1.157723

2 3 4.465908 .805701 2.238265

Mean, 2 -- 3.660207 -- 1.260632

3 1 3.555348 -.3002198 0.740655

3 2 3.806663 -.0489054 0.952271

3 3 4.204693 .3491249 1.417826

Mean, 3 -- 3.855568 -- --
Smear 
(mean 2&3)

1.0369173

i îz - z i iˆ(z  - z )e

Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2 2

(Z )
3 3

E(Y ) =  e

E(Y ) =  e





Group Фi eln Predicted Cost

2 1.260632 x 38.8694 49.00

3 1.0369173 x 47.2554 49.00
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Subgroup-specific Smearing Retransformation (II)

• All else equal, in face of differences in variance (or 
skewness or kurtosis), use of subgroup-specific 
smearing factors yields unbiased estimates of subgroup 
means

• Use of separate smearing factors eliminates efficiency 
gains from log transformation, because cannot assume 
p-value derived for log of cost applies to arithmetic mean 
of cost

0
.0

5
.1

.1
5

6 7 8 9 6 7 8 9

0 1

F
ra

ct
io

n

lncost
Graphs by treat

Potential Problems with Substituting Transformed  
Data for Raw Data (I)

P- value for normality = 0.002 and p=0.01 for  two groups

• Log transformation doesn’t always result in normality

Potential Problems with Substituting Transformed  
Data for Raw Data (II)

• P-value from t-test of log cost directly applies to 
difference in log of cost

• Generally also applies to difference in geometric mean of 
cost

– Observe similar p-values for difference in log and 
difference in geometric mean

• P-value for log may or may not be directly applicable to 
difference in arithmetic mean of untransformed cost
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Potential Problems with Substituting Transformed  
Data for Raw Data (III)

• Applicability of p-value for log to difference in arithmetic 
mean of untransformed cost depends on both 
distributions of log being normal and having equal 
variance and thus standard deviation

– If log normally distributed and variances equal, 
inferences about difference in log generally applicable 
to difference in arithmetic mean

– If log either not normally distributed or variances 
unequal, inferences about difference in log generally 
not applicable to difference in arithmetic mean

Response 3: Tests of Means that Avoid Parametric 
Assumptions

• Bootstrap estimates of distribution of observed difference 
in arithmetic mean costs

• Yields a test of how likely it is that 0 is included in this dis-
tribution (by evaluating probability that observed  
difference in means is significantly different from 0)

-6000 0 6000 12000
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Implementation of Bootstrap

• Random draw with replacement from each treatment 
group (thus creating multiple samples)

• Calculate difference in mean for each sample
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Bootstrap: Non-parametric and Parametric Tests  

• Nonparametric tests

– P-value:  count replicates for which difference is 
above and below 0 (smaller count as proportion of 
total yields 1-tailed test of cost difference)

– CI:  Order differences from lowest to highest; 
construct CI by identifying difference for replicates 
representing 2.5th and 97.5th percentiles

• Parametric tests:

– Because bootstrap replicates represent mean 
difference, reported "standard deviation" for mean of 
replicates equals standard error of mean

• Difference in means / SE = t statistic

• Difference in means + 1.96 SE = 95% CI

Histogram of Bootstrap Results
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Nonparametric Bootstrap and Normality

• Nonparametric bootstrap does not depend on normality, 
so there is no violation of assumptions, but...

• If sample median has smaller relative bias than sample 
mean, may be better to use median whether sample 
mean is analyzed parametrically or nonparametrically
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Example: Distribution of Costs, Chapter 5

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Group 0 Group 1

Arith Mean 3015  3040

Std. Dev. 1582.802 1168.737

Quantiles

     5% 899 1426

   25% 1819 2226

   50% 2825.5 2900.5

   75% 3752 3604

   95% 6103 5085

Skewness 1.03501 1.525386

Kurtosis 4.910192 9.234913

Geom Mean 2600.571 2835.971

Mean ln 7.8634864 7.9501397

SD ln .57602998 .37871479

Obs 250 250

Example: P Values from 6 Univariate Tests of 
Difference in Cost

SUMMARY TABLE P-value      95% CI

DIFFERENCE IN ARITHMETIC
MEAN COST:

25.00   SE:  124.44

  t-test, difference in means: 0.8409    -220 to 270

  nonparametric BS, diff in means: 0.8600    -218 to 275

  Wilcoxan rank-sum: 0.3722

  Kolmogorov-Smirnov: 0.0017

  t-test, difference in logs: 0.05

  transformation to normal: Sqrt

  t-test, transformed variable: 0.2907

  test for heteroscedasticity: 0.0000

Why Do Different Statistical Tests Lead To 
Different Inferences?

• Tests are evaluating differences in different statistics 

– T-test of untransformed costs:  Cannot infer that 
arithmetic means differ

– Bootstrap:  Same (lack of) inference without normality 
assumption

– Wilcoxon rank-sum test: Same inference, but had 
medians differed, p-value would have been significant

– T-test of log costs: Can infer means of logs – and thus 
geometric means – differ

– Kolmogorov-Smirnov test: Can infer distributions  
differ (but not necessarily means or medians)
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Summary, Univariate Analysis

• Want statistic that provides best estimate of population 
mean

– Because mean * N is best estimate of what gainers 
gain and losers lose

• Best refers to a measure of error that incorporates both 
bias and variability

• In face of skewness:

– Sample means less biased

– Sample median often less variable

• Transformation/retransformation of limited value in 
presence of heteroscedasticity

Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting 
use of multivariable analysis may have added benefits:

– Improves power for tests of differences between 
groups (by explaining variation due to other causes)

– Facilitates subgroup analyses for cost-effectiveness 
(e.g., more/less severe; different countries/centers)

– Variations in economic conditions and practice 
pattern differences by provider, center, or country 
may have a large influence on costs and 
randomization may not account for all differences

– Added advantage: Helps explain what is observed 
(e.g., coefficients for other variables should make 
sense economically)

• If treatment not randomly assigned, multivariable 
analysis necessary to adjust for observable imbalances 
between treatment groups, but may NOT be sufficient

Nonrandom Assignment
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• Common techniques

– Ordinary least squares regression predicting costs 
after randomization (OLS)

• Ordinary least squares regression predicting log 
transformation of costs after randomization (log OLS)

• Generalized Linear Models )GLM)

• Other techniques:

– Generalized Gamma regression (Manning et al., 
Journal of Health Economics, 2005)

– Extended estimating equations (Basu and Rathouz, 
Biostatistics 2005)

Multivariable Techniques Used for Analysis of Cost

Generalized Linear Models (GLM)

• GLM models:

– Don’t require normality or homoscedasticity,

– Evaluate log of mean, not mean of logs, and thus

• Don’t have problems related to retransformation 
from scale of estimation to raw scale

• To build them, must identify "link function" and "family“ 
(based on data)

GLM Relaxes OLS Assumptions

• Ability to choose among different links relaxes 
assumption that E(y/x) = ΣβiXi (OLS) or E(ln(y)/x)=ΣβiXi

(Log OLS)

• Ability to choose among different families relaxes 
assumption of constant variance

– Gauss: constant variance

– Poisson:  variance proportional to mean

– Gamma:  variance proportional to square of mean

– Inverse gauss:  variance proportional to cube of mean
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Stata and SAS Code

• Stata Code

glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family / 
log link): 

proc genmod; 

model y=x/ link=linkname dist=familyname; 

run;

• Link function directly characterizes how linear 
combination of predictors is related to prediction on 
original scale

• Examples of links include:

– Identity Link: (used in OLS)

– log link:                              (NOT used in log OLS)

• GLM with log link differs from log OLS (ln(E(y/x))=Xβ)

ˆ
i i iY  = β  X

)ˆ i i(  X
iY  = exp 

Link Function

• Specifies distribution that reflects mean-variance 
relationship

• Currently, families for continuous data available in Stata 
include:

– Gaussian (constant variance)

– Poisson (variance is proportional to mean)

– Gamma (variance is proportional to square of mean)

– Inverse gaussian (variance is proportional to cube of 
mean)

• Use of poisson, gamma, and inverse Gausian families 
relaxes assumption of homoscedasticity

Family
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GLM Comments (I)

• Advantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not correct family distribution

• Choice of family only affects efficiency if link 
function and covariates are specified correctly

– Gains in precision from estimator that matches data 
generating mechanism

– Avoids retransformation problems of log OLS models

GLM Comments (II)

• Disadvantages

– Can suffer substantial precision losses

• If heavy-tailed (log) error term, i.e., log-scale 
residuals have high kurtosis (>3)

• If family is misspecified

Retransformation

• GLM avoids problem that simple exponentiation of 
results of log OLS yields biased estimates of predicted 
costs

• GLM does not avoid other complexity of nonlinear 
retransformations (also seen in log OLS models):

– On transformed scale, effect of treatment group is 
estimated holding all else equal; however, 
retransformation (to estimate costs) reintroduces 
covariate imbalances
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Recycled Predictions

• For multiplicative models (e.g., log or logit), shouldn’t use 
means of covariates when making predictions

– Mean of retransformations does not equal 
retransformation of mean

• Instead use method of recycled predictions to create an 
identical covariate structure for two groups by:

– Coding everyone as if they were in treatment group 0 
and predicting

– Coding everyone as if they were in treatment group 1 
and predicting 

• Since Stata 11, can be implemented in Stata with 
“margins” command

i0Ẑ

i1Ẑ

• Margins command equivalent to

– Generating a temporary 0/1 variable that equals the 
treatment status variable

– Assigning 0s to temporary variable for all 
observations independent of actual treatment status

– Predicting pcost0, the predicted cost had everyone 
been in treatment group 0

– Assigning 1s to temporary variable for all 
observations independent of actual treatment status

– Predicting pcost1, the predicted cost had everyone 
been in treatment group 1

What is “margins” Command Doing?

Margins

glm cost i.treat dissev bl* race, link(log) 
family(gamma)

margins treat
Predictive margins                 Number of obs = 500
Model VCE    : OIM
Expression   : Predicted mean cost, predict()
------------------------------------------------------

|        Delta-method
|   Margin Std Err     z  P>|z| [95% Conf. Intl]

------+-----------------------------------------------
treat |

0  | 2963.182 75.08546 39.48 0.000 2816.87 3111.199
1  | 3099.562 79.74378 38.87 0.000 2943.17  3255.76

------------------------------------------------------

3099.56 – 2963.18 = 136.38 difference
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Special Cases (I)

• A substantial proportion of observations have 0 costs

– May pose problems to regression models

– Commonly addressed by developing a “two-part” 
model in which first part predicts probability that costs 
are zero or nonzero and second part predicts level of 
costs conditional on there being some costs

• 1st part : Logit or probit model

• 2nd part : log OLS or GLM model

Special Cases (II)

• Censored costs

– Results derived from analyzing only completed cases 
or observed costs are often biased

– Need to evaluate “mechanism” that led to missing 
data and adopt a method that gives unbiased results 
in face of missingness

Three Appendices

1) GLM links and families

2) % Interpretation of log OLS and log/gamma GLM

3) QALY Analysis
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APPENDIX 1:

GLM LINKS AND FAMILIES

• Link function directly characterizes how linear 
combination of predictors is related to prediction on 
original scale

• Examples of links include:

– Identity Link: (used in OLS)

– log link:

ˆ
i i iY  = β  X

)ˆ i i(  X
iY  = exp 

Link Function

Log Link

• Log link is most commonly used in literature

• When we adopt log link, we are assuming:

ln(E(y/x))=Xβ

• GLM with a log link differs from log OLS in part because 
in log OLS, we are assuming:

E(ln(y)/x)=Xβ

• ln(E(y/x) ≠ E(ln(y)/x)

i.e. log of mean  mean of log costs
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ln(E(y/x) ≠ E(ln(y)/x)

Variable Group 1 Group 2

Observations

1 15 35

2 45 45

3 75 55

Arithmetic mean 45 45

Log, arith mean cost 3.806662 3.806662 *

Natural log

1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arith mean, log cost 3.610734 3.789781 †

* Difference = 0;  † Difference = 0.179047

Comparison of Results of GLM Gamma/Log and 
log OLS Regression

Variable Coefficient SE  z/T p value

GLM, gamma family, log link

Group 2 0.000000 0.405730 0.00 1.000

Constant 3.806662 0.286894 13.27 0.000

Log OLS

Group 2 0.179048 0.492494 0.36 0.74

Constant 3.610734 0.348246 10.32 0.000

% Interpretation?

• % interpretation for log OLS and GLM log/gamma 
coefficients unsustainable in face of heteroscedasticity 
on raw scale

* (C1 - C0) / C0; † Rx coefficient from regression

C0 C1 SD0 SD1 Obs *
Log 

OLS†
Log/ 

Gamma †

~8000 ~62,000 2087 15,305 6.39 2.00 2

~8000 ~62,000 2087 41,710 6.39 1.84 2

~8000 ~62,000 2087 52,557 6.39 1.75 2

~8000 ~62,000 2087 118,332 6.39 1.25 2

~8000 ~62,000 2087 264,050 6.35 0.50 1.99
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% Interpretation?

• % interpretation sensitive to magnitude of difference in 
means even when there is raw scale homoscedasticity

* (C1 - C0) / C0; † Rx coefficient from regression

C0 C1 SD0 SD1 Obs *
Log 

OLS†
Log/ 

Gamma †

8361 9191 66.85 66.85 0.09 0.10 0.09

8361 16,531 66.85 66.85 0.99 0.71 0.69

8361 24,960 66.85 66.85 1.99 1.12 1.09

8361 41,561 66.85 66.85 4.12 1.63 1.60

8361 74761 66.85 66.85 9.93 2.42 2.39

Power Link Function

• Stata’s power link provides a flexible link function

• It allows generation of a wide variety of named and 
unnamed links, e.g.,

– power 1 = Identity link;      = BiXi

– power .5 = Square root link;      = (BiXi)2

– power .25:       = (BiXi)4

– power 0 = log link;      = exp(BiXi)

– power -1 = reciprocal link;      = 1/(BiXi)

– power -2 = inverse quadratic;      = 1/(BiXi)0.5

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

Selecting a Link Function

• There is no single test that identifies appropriate link
• Instead can employ multiple tests of fit

– Pregibon link test checks linearity of response on 
scale of estimation

– Modified Hosmer and Lemeshow test checks for 
systematic bias in fit on raw scale

– Pearson’s correlation test checks for systematic bias 
in fit on raw scale

– Ideally, all 3 tests will yield nonsignificant p-values
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• Specifies distribution that reflects mean-variance 
relationship

• Currently, families for continuous data available in Stata 
include:

– Gaussian (constant variance)

– Poisson (variance is proportional to mean)

– Gamma (variance is proportional to square of mean)

– Inverse gaussian (variance is proportional to cube of 
mean)

• Use of poisson, gamma, and inverse Gausian families 
relaxes assumption of homoscedasticity

Family

• Modified Parks test is a “constructive” test that 
recommends a family given a particular link function

• Implemented after GLM regression that uses particular 
link

• test predicts square of residuals (res2) as a function of 
log of predictions (lnyhat) by use of a GLM with a log link 
and gamma family to

– Stata code

glm res2 lnyhat,link(log) family(gamma), robust

• If weights or clustering are used in original GLM, same 
weights and clustering should be used for modified Park 
test 

Selecting a Family

• Recommended family derived from coefficient for lnyhat:

– If coefficient ~=0,  Gaussian

– If coefficient ~=1,  Poisson

– If coefficient ~=2,  Gamma

– If coefficient ~=3,  Inverse Gaussian or Wald

• Given absence of families for negative coefficients:

– If coefficient < -0.5, consider subtracting all  
observations from maximum-valued observation and 
rerunning analysis

Recommended Family, Modified Park Test
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FITTED MODEL:   Link = Log ; Family = Gamma

Results, Modified Park Test (for Family)

Coefficient:     1.5912

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Gamma: 1.9560 0.1619

Poisson: 4.0897 0.0431

Inverse Gaussian or Wald 23.2272 0.0000

Gaussian NLLS: 29.6281 0.0000

Results of tests of GLM Log link

Pearson Correlation Test: .2460

Pregibon Link Test: .1273

Modified Hosmer and Lemeshow: .6199

GLM DIAGNOSTICS, Gamma/Log

eeict1.dta

http://www.uphs.upenn.edu/dgimhsr/eeinct_multiv.htm

Summary:  GLM Analysis of Cost

Id/Gau Id/Pois Log/Gam 0.65/Pois

Pearson 1.0000 0.8818 0.2460 0.9027

Pregibon 0.8913 0.7021 0.1273 0.7469

Mod H&L 0.3487 0.5134 0.6199 0.5870

Summary† 0.4360 0.3394 1.4746 0.2441

Difference 22 113 135 88

P-value 0.84 0.26* 0.21 0.39*

*  P-value derived from bootstrap

† Σi (1-p i)2

Fit Statistics, (Recent) GLM Analysis

Pearson Pregibon H&M

EQ

Log/Gamma .047 .461 .002

-1/Gauss .566 .405 .0004

Hospital Cost

Log/Gamma .654 .845 .000

-.1/Igauss .884 .844 .038

ED visit cost

Log/Gamma .583 .436 .526

.6/Gamma .912 .983 .971
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APPENDIX 2:

% Interpretation of Log OLS and 
Log/Gamma GLM

Failure of % Interpretation of Log OLS?

Variable Group 1 Group 2 Group 3

Raw cost / Log cost

Obs:  1 12.975 / 2.563 19.4625 / 2.968 38 / 3.638

2 25 / 3.219 37.5 / 3.624 40.547 / 3.702

3 52.025 / 3.952 78.0375 / 4.357 56.453 / 4.033

Mean / Log mean 30 / 3.2445 45 / 3.6500 45 / 3.7912

SD / SD Log 20 / 0.6947 30 / 0.6947 10 / 0.2123

• Groups 1 and 2 differ in SD of cost (20 vs 30) 
(heteroscedasticity on cost scale) but share same SD of 
logs (0.6947) (homoscedasticity on log scale)

• Groups 2 and 3 and 1 and 3 differ in both SD of cost (30 
vs 10 and 20 vs 10) and SD of log cost (0.6947 vs 0.2123) 
(heteroscedasticity on cost scale and log scale)

Failure of % Interpretation of Log OLS

• For difference between G2 vs G1, 0.405 coefficient from 
log OLS predicting log cost ≠ observed 50% difference

– But exp(0.405) - 1 does (0.5 vs 50%)

• For differences between G3 vs G1 and G3 vs G2, neither 
coefficients from log OLS (0.547 and 0.141) nor exp(coef)-1 
(0.727 and 0.152) equal observed % differences (50% 
and 0%)

Variable G2 vs G1 G3 vs G1 G3 vs G2

Group means 45 vs 30 45 vs 30 45 vs 45

Obs % Mean Diff, Cost 50% 50% 0%

Log OLS Coef 0.405 0.547 0.141

exp(coef) - 1 0.50 0.727 0.152

91

92

93



32

% Interpretation of GLM With Log Link/Gamma Family

• For differences between G2 vs G1 and G3 vs G1, 0.405 
coefficient from GLM predicting cost  ≠ observed 50% 
difference

– But exp(0.405) - 1 does (0.5 vs 50%)

• For difference between groups G3 vs G2, both coefficient 
and exp(0) - 1 equal observed difference (0.0 vs 0%)

Variable G2 vs G1 G3 vs G1 G3 vs G2

Group means 45 vs 30 45 vs 30 45 vs 45

Obs % Mean Diff, Cost 50% 50% 0%

GLM Coef, Cost (log/gam) 0.405 0.405 0.0

exp(coef) - 1 0.50 0.50 0.0

Summary, Percentage Interpretation

• For log OLS:

– Percentage interpretation of coefficient generally 
unreasonable

– Percentage interpretation of exp(coef)-1 reasonable 
when strict homoscedasticity on log scale

– Percentage interpretation of exp(coef)-1 less/un 
reasonable when log SDs differ

• For GLM with log link and gamma family:

– Percentage interpretation of coefficient generally 
unreasonable

– Percentage interpretation of exp(coef)-1 reasonable 
whether or not SDs on log scale are identical

APPENDIX 3:

QALY Analysis
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QALY Evaluation

• While substantial attention has been paid to models for 
evaluation of cost, substantially less has been paid to 
models for evaluation of QALYs

• QALY distribution shares certain complicating features 
with costs, but also has its own complicating features

– Predictions should be confined to theoretical range of 
preference assessment instrument (e.g., –0.594 and 
1.0 for EQ-5D)

– Long, heavy LEFT tails

– (Particularly for pre-scored instruments) Often multi-
modal (see Figure on next slide)

– (Commonly) Large fraction of 1s

Sample EQ-5D Scores

0
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F
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- .5 0 .5 1
ind ex (util ity) score

Multivariable Approaches

• There are beginnings of a literature on multivariable 
approaches
– OLS (or GLM with identity link and gauss family) 

probably commonest 
– Alternatives

• GLM with family (and link) diagnostics
• GLM with a logit link and binomial 1 family or it’s 

equivalent, beta regression (need specialized code 
for Stata), (Basu and Manca)

• Adjusted limited dependent variable models (Alava 
et al.)

• While we demonstrate some of these methods, more 
work is required before we will be able to identify best 
practice
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Implemented Models

• Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

• Also assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

Variance function:  V(u) = 1
Link function:         g(u) = u

[Gaussian]
[Identity]

Log likelihood = 85.080395
AIC -.3203216
BIC -3055.401

qaly Coef Std Err z P>|z| 95% CI

1.treat .0627749 .0183515 3.42 0.001 .0268067    .0987432

dissev -.1512017 .0831731 -1.82 0.069 -.314218    .0118147

blcost -.0000359 .0000121 -2.96 0.003 -.000060   -.0000122

blqaly .207374 .0633239 3.27 0.001 .0832614   .3314867

_cons .511092 .0620345 8.24 0.000 .3895067   .6326773

Common Starting Point:  GLM with Gauss/Identity

glm qaly i.treat dissev blcost blqaly, link(identity) 
family(gauss)

eeict2011.dta

FITTED MODEL:   Link = Identity ; Family = Gaussian

Results, Modified Park Test (for Family)

Coefficient:     -.929485

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Gaussian NLLS: 4.2582 0.0391

Poisson: 18.3496 0.0000

Gamma: 42.2987 0.0000

Inverse Gaussian or Wald 76.1054 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 1

Pregibon Link Test: .6741

Modified Hosmer and Lemeshow: .8335

GLM DIAGNOSTICS, Identity/Gauss

eeict2011.dta
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Troubling Findings

• Coefficient on modified Park test is negative (we don’t 
have any families that are negative) and p-value for 
named families are all significantly rejected

• When confronted with coefficient < -0.5, consider 
subtracting all observations from maximum theoretically 
possible observation (e.g., 1.0 for most, if not all, 
instruments)

gen nqaly=1-qaly

sum qaly nqaly

Variable |     Obs        Mean    Std. Dev.      Min       Max

---------+----------------------------------------------------
qaly |     500    .5941653    .2121148    .05679    .96882

nqaly |     500    .4058347    .2121148    .03178    .94321

Variance function:  V(u) = 1
Link function:         g(u) = u

[Gaussian]
[Identity]

Log likelihood = 85.080395
AIC -.3203216
BIC -3055.401

nqaly Coef Std Err Z P>|z| 95% CI

1.treat -.0627749 .0183515 -3.42 0.001 -.0987432  -.0268067

dissev .1512017 .0831731 1.82 0.069 -.0118147     .314218

blcost .0000359 .0000121 2.96 0.003 .0000122   .000060

blqaly -.207374 .0633239 -3.27 0.001 -.3314867  -.0832614

_cons .488908 .0620345 7.88 0.000 .3673227   .6104933

glm nqaly i.treat dissev blcost blqaly, link(identity) 
family(gauss)

eeict2011.dta

Estimate NQALY, GLM with Gauss/Identity

glm nqaly i.treat dissev blcost blqaly,link(identity) 
family(gauss)

margins treat

Margin  Std. Err.           z    P>|z|      [95% Conf. Interval]
---------+------------------------------------------------------------------------------

treat |
0 | .4372   0.0130    33.70    0.000         .4118     .4627
1 | .3744   0.0130    33.86    0.000         .3490     .3999

1-.4372 = .5628;  1-.3744 = .6256

DIFFERENCE:  .0628

Identity/Gauss Recycled Predictions
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FITTED MODEL:   Link = Identity ; Family = Gaussian

Results, Modified Park Test (for Family)

Coefficient:     .686724

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson 0.9443 0.3312

Gaussian NLLS: 4.5374 0.0332

Gamma: 16.5942 0.0000

Inverse Gaussian or Wald 51.4871 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 1

Pregibon Link Test: .6741

Modified Hosmer and Lemeshow: .8335

GLM DIAGNOSTICS, Identity/Gauss

eeict2011.dta

Variance function:  V(u) = u
Link function:         g(u) = u

[poisson]
[Identity]

Log likelihood = -335.2046527
AIC 1.360819
BIC -3023.244

nqaly Coef Std Err z P>|t| 95% CI

1.treat -.06313 .0566142 -1.12 0.265 -.1740918    .0478318

dissev .16252 .2609842 0.62 0.533 -.3489997   .6740397

blcost .0000373 .0000387 0.96 0.335 -.0000385   .0001132

blqaly -.199954 .1926091 -1.04 0.299 -.5774608   .1775532

_cons .477935 .190924 2.50 0.012 .1028309    .8512394

glm nqaly i.treat dissev blcost blqaly, link(identity) 
family(poisson)

Change Family to Poisson and Rerun Model

eeict2011.dta

glm nqaly i.treat dissev blcost blqaly,link(identity) 
family(poisson)

margins treat

Margin  Std. Err.           z    P>|z|      [95% Conf. Interval]
---------+------------------------------------------------------------------------------

treat |
0 | .4374   0.0417    10.49    0.000         .3557     .5191
1 | .3743   0.0386      9.71    0.000         .2987     .4498

1-.4374 = .5626;  1-.3743 = .6257

DIFFERENCE:  .0631

Identity/Poisson Recycled Predictions
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FITTED MODEL:   Link = Identity ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     .703074

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson 0. 8796 0.3483

Gaussian NLLS: 4.9314 0.0264

Gamma: 16.7804 0.0000

Inverse Gaussian or Wald 52.6339 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: .9396

Pregibon Link Test: .6961

Modified Hosmer and Lemeshow: .8949

GLM DIAGNOSTICS, Identity/Poisson

eeict2011.dta

Can We Improve Link? 

• Iteratively evaluate power links (in 0.1 intervals) between 
1 and 2

– Use modified Park test to select a family

– Rerun GLM with power and preferred link

– Evaluate fit statistics

Power 1.5 Link / Poisson Family

Variance function:  V(u) = u
Link function:    g(u) = u^(1.5)

[Poisson]
[Power]

Log likelihood = -335.199289
AIC 1.360797
BIC -3023.255

nqaly Coef Std Err z P>|z| 95% CI

1.treat -.059525 .053554 -1.11 0.266 -.164488   .045439

dissev .156198 .244879 0.64 0.524 -.323756   .636152

blcost .000036 .000037 0.97 0.331 -.000037   .000109

blqaly -.185844 .180880 -1.03 0.304 -.540361   .168674

_cons .322960 .180606 1.78 0.074 -.031021   .676941

Power 1.5 Link / Poisson Family

glm nqaly i.treat dissev blcost blqaly, link(power 1.5) family(poisson)

eeict2011.dta
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glm nqaly i.treat dissev blcost blqaly,link(power 1.5) 
family(poisson)

margins treat

Margin  Std. Err.           z    P>|z|      [95% Conf. Interval]
---------+------------------------------------------------------------------------------

treat |
0 | .4371   0.0415    10.53    0.000         .3557     .5186
1 | .3745   0.0384      9.75    0.000         .2992     .4498

1-.4371 = .5629;  1-.3745 = .6255

DIFFERENCE:  .0626

Power 1.5/Poisson Recycled Predictions

FITTED MODEL:   Link = Power 1.5; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     .719996

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson 0. 7756 0.3785

Gaussian NLLS: 5.1282 0.0235

Gamma: 16.2080 0.0001

Inverse Gaussian or Wald 51.4255 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: .9939

Pregibon Link Test: .9578

Modified Hosmer and Lemeshow: .9821

GLM DIAGNOSTICS, Power 1.5/Poisson

eeict2011.dta

Logit Link, Binomial 1 Family

• Alternatively, we can transform QALY distribution so that 
it ranges between 0 and 1 and use a logit link and 
binomial 1 family (equivalent to beta regression)

local max=1

local min=0 (for EQ-5D, local min=-0.594)

local a=-`min’/(`max’-`min’)

local b=1/(`max’-`min’)

gen bqaly=`a’+(`b’*qaly)

sum qaly bqaly

Variable |     Obs        Mean    Std. Dev.       Min      Max

--------+-----------------------------------------------------

qaly |      500    .5941653    .2121148     .05679   .96822

bqaly |      500    .5941653    .2121148     .05679   .96822
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Variance function: V(u)=u*(1-u)
Link function:         g(u)=ln(u/1-u)

[Bernoulli]
[Logit]

Log likelihood = -238.9699913
AIC .97588
BIC -2050.859

nqaly Coef Std Err z P>|z| 95% CI

1.treat .2626131 .1834617 1.43 0.152 -.0969653   .6221914

dissev -.6328458 .832264 -0.76 0.447 -2.264053   .9983617

blcost -.0001494 .0001208 -1.24 0.216 -.0003862    .0000875

blqaly .8675488 .6338201 1.37 0.171 -.3747157   2.109813

_cons .0373004 .6190775 0.06 0.952 -1.176069    1.25067

GLM with Binomial 1/Logit

glm bqaly i.treat dissev blcost blqaly, link(logit) family(binomial 
1)

eeict2011.dta

glm bqaly i.treat dissev blcost blqaly,link(logit) 
family(binomial 1)

margins treat

Margin  Std. Err.           z    P>|z|      [95% Conf. Interval]
---------+------------------------------------------------------------------------------

treat |
0 | .5628   0.0312    18.02    0.000         .5016     .6441
1 | .6254   0.0305    20.53    0.000         .5657     .6852

DIFFERENCE:  .0626

Logit/Binomial 1 Recycled Predictions

FITTED MODEL:   Link = Logit ; Family = Binomial

Results of tests of GLM Identity link

Pearson Correlation Test: .9914

Pregibon Link Test: .5605

Modified Hosmer and Lemeshow: .9242

Run Link DIAGNOSTICS, Logit/Binomial 1

eeict2011.dta
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