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WHY DO WE TEST?

Why Do We Test?

1) To increase or decrease likelihood of disease so we are 
sufficiently confident in treating or withholding treatment

?? To obtain a precise estimate of
probability of disease??

2) To target one of several treatments to a patient 
(precision medicine)

3) To understand disease process simply for sake of 
knowing

4) To avoid malpractice

5) To generate revenue
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WHAT DO WE MEAN WHEN WE SAY THAT 
A TEST RESULT IS "POSITIVE"?

What Do We Mean When We Say That a Test 
Result is "Positive"?

1) Person has disease?

2) Test result more than 2 sd above (or below) mean?

3) Test result leads to a post-test (or posterior) probability 
that is greater than pre-test (or prior) probability?

4) If we don't plan to obtain additional information, test 
result is indicative of treatment?

?? “Test result was positive, but we are going 
to send you home anyway” ??

DIAGNOSTIC TESTING OUTLINE
(the next 5 weeks)

• Interpreting dichotomous tests (FINISHING TODAY)

– 2x2 tables

– Likelihood ratios positive and negative

• Interpreting continuously scaled tests

– Selection of optimal 2x2 table (with and without use of 
receiver operating characteristic (ROC) curves)

– Stratum-specific likelihood ratios (SSLR)

• Development of prediction rules

• Verification bias

• Comparison of 2x2 and SSLR approaches

• Graphing results of optimal test selection

• Choice among tests
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Outline for Today

• Treatment threshold and difference in outcomes

• LR+/- and sensitivity and specificity

• Relationship between likelihood ratios, odds ratios, and 
relative risks

• Confidence intervals for test characteristics

• Sample size for determination of test characteristics

• Probabilists vs decision makers

• Last class, Sankey identified two common treatment 
thresholds that exist when a diagnostic test is available: 
do nothing / test threshold and test / treat threshold

No test-

No treat

Test and Treat if

Test result is positive
Treat

0 Probability of disease 1

^
TT

^
TTT

1. Treatment Threshold and Difference in Outcomes

Logic Behind Thresholds

• Value of not testing/not treating highest as pretest 
probability of disease approaches 0 and lowest as it 
approaches 1

• Value of treating empirically highest/lowest as pretest 
probabilities of disease approach 1/0

• Value of testing/treating highest in the middle of it’s 
range and decreases as pretest probabilities approach 0 
and 1

• No Test/Test Threshold (TTT) defined as probability 
where expected value of not testing/not treating equals 
expected value of  testing/treating

• Test/Treat Theshold (TT) defined as probability where 
expected value of testing/treating equals expected   
value of  treating empirically
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Other Thresholds

• Other thresholds exist

– e.g., test and treat; withdraw treatment if test result is 
negative

• Used when expected value of testing, treating, and 
withdrawing treatment after a negative test is 
greater than expected value of testing and initiating 
treatment if test is positive

What If No Diagnostic Test Is Available?

• Suppose you are in a remote health center and a child 
aged between 3 and 36 months presents with a rectal 
temperature >39̊C

• Child has no obvious focal infection for which timely 
antibiotic therapy is indicated (e.g., otitis media), nor has 
she received antibiotics during preceding 48 hours

• She has no “toxic” clinical appearance necessitating 
immediate hospitalization, nor a specific viral infection 
(e.g., varicella), a known immune-deficiency condition, or 
chronic illness that would alter standard approaches to 
febrile illness (e.g., hemoglobinopathy)

• What information goes into decision to either treat 
empirically or watchfully wait?

LIKELIHOOD OF DISEASE
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Likelihood (Probability) of Disease

• All else equal, empiric therapy more likely indicated for 
higher likelihoods (probabilities) of disease

• Empiric therapy less likely indicated for lower likelihoods 
of disease

DIFFERENCE IN VALUE OF OUTCOMES

Difference in Value of Outcomes

• All else equal, when difference in value between 
correctly treating vs incorrectly withholding treatment 
increases compared to difference between correctly 
withholding treatment vs incorrectly treating, more likely 
that empirical treatment indicated

• When difference in value between correctly treating vs 
incorrectly withholding treatment decreases compared to 
difference between correctly withholding treatment vs 
incorrectly treating, more likely that withholding treatment 
indicated
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Why DIFFERENCE in Outcomes?

Treatment Threshold

• Can combine information about probability of disease 
and difference in outcomes to identify a probability of 
disease (p*) where expected outcomes from treating and 
withholding treatment are equal

– If probability of disease is above p*, expected 
outcome from treatment exceeds expected outcome 
from withholding treatment, and treatment is indicated

– If below p*, reverse is true and withholding treatment 
indicated

Definitions

OD+,Rx+ = OTP = Value of outcome given treatment when 
disease is present

OD+,Rx- = OFN = Value of outcome given withholding of 
treatment when disease present

OD-,Rx- = OTN = Value of outcome given withholding of 
treatment when disease is absent

OD-,Rx+ = OFP = Value of outcome given treatment when 
disease is absent

OTP - OFN = ∆OD+ = Difference in outcome | disease

OTN - OFP = ∆OD- = Difference in outcome | no disease
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∆OD- and ∆OD+

• ∆OD- sometimes (pessimistically?) referred to as 
“(incremental) cost of false positive (Cfp)”

– What is lost when we incorrectly treat

• Equally justifiable to refer to it as “(incremental) benefit of 
true negative (Btn)”

– What is gained when we correctly withhold treatment

• ∆OD+ sometimes (pessimistically?) referred to as 
“(incremental) cost of false negative (Cfn)”

– What is lost when we incorrectly withhold treatment

• Equally justifiable to refer to it as “(incremental) benefit of 
true positive (Btp)”

– What is gained when we correctly treat

• Same quantities independent of optimism/pessimism

Treatment Threshold (p*)

• Set expected outcome of treatment equal to 
expected outcome of no treatment

Expected outcome of treatment (EOTreat)

EOTreat = pOTP + (1-p)OFP

Expected outcome of no treatment (EONoTreat)

EONoTreat = pOFN + (1-p)OTN

Treatment threshold = p* = (EOTreat = EONoTreat)

Deriving Treatment Threshold

Solve for p* such that (EOTreat = EONoTreat)

[1] pOTP + (1-p)OFP = pOFN + (1-p)OTN

[2] pOTP + OFP - pOFP = pOFN + OTN - pOTN

[3] (pOTP - pOFN) + (pOTN - pOFP) = (OTN - OFP)

[4] p[(OTP - OFN) + (OTN - OFP)] = (OTN - OFP)

[5] p (∆OD+ + ∆OD-) = ∆OD-

[6] p* = ∆OD- / (∆OD+ + ∆OD-)



8

Treatment Decisions and Threshold

∆OD- / (∆OD+ + ∆OD-)  =  Treatment threshold

• At end of any testing sequence (e.g., no tests or 1, 2, 3+ 
tests):

– If (posttest) probability is less than threshold, 
watchfully wait because expected outcome from 
withholding treatment exceeds that from treatment

– If probability is greater than threshold, treat 
empirically because expected outcome from 
treatment exceeds that from withholding treatment

Treatment Threshold and Definition of
Positive and Negative Tests

• Treatment threshold is (meant to be) linked to definition 
of positive and negative tests

– Independent of whether test result yields posttest 
probabilities that are greater/less than pretest 
probabilities:

• Negative tests should yield posttest probabilities 
that are below treatment threshold

• Positive tests should yield posttest probabilities 
that exceed treatment threshold

Definition of Difference in Outcomes

• Difference in net value of treating someone correctly and 
net value of treating them incorrectly

• Can be estimated by use of a cost-benefit framework 
(monetizing both costs and outcomes)

– E.g., a false positive costs an extra $100 as 
compared to a true negative (a true negative saves 
$100 as compared to a false positive)

• Also can be estimated by use of a cost-effectiveness 
(NMB) framework (separate calculation of incremental 
costs (c) and outcomes (e)):

– ∆OD+ = (W eD+) – cD+

– ∆OD- = (W eD-) – cD-

where W = willingness to pay
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• Under a cost-effectiveness framework (in which ∆OD+

equals a combination of cD+ and eD+ and ∆OD- equals a 
combination of cD- and eD-), and W equals maximum 
willingness to pay:

Cost-Effectiveness Equivalent

D- D-

D- D+ D- D+

W e  - c
p* = 

W(e  + e ) - (c  + c )

Ratio of Differences Sufficient

• Many people uncomfortable with identifying absolute 
difference in outcomes among those with and without 
disease

• Good news:  [If we can ignore the cost of the test] ratio 
of difference in outcomes more important than absolute 
magnitudes

– e.g., when defining treatment threshold, difference in 
outcomes among those without disease thought to be 
1/3 the difference in outcomes among those with 
disease, know that:

∆OD- =  1/3 ∆OD+

➔ p* = 1/3 ∆OD+ / ((1/3 ∆OD+) + ∆OD+)  =  0.25

Treatment Threshold and Differences in Outcomes

• If instead have an idea of treatment threshold, can infer 
relative valuation of ∆OD- and ∆OD+

– If our p* = 0.25, then:

• Implication:  Implicitly making assumptions about ∆OD-

and ∆OD+ whenever a treatment decision is made

0.25 = ∆OD- / (∆OD+ + ∆OD-)

0.25∆OD+ + 0.25∆OD- = ∆OD-

0.25∆OD+ = 0.75 ∆OD-

1/3 ∆OD+ = ∆OD-
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TT and TTT

• Defining the do nothing / test threshold (TT) and test / 
treat threshold (TTT) requires information about the test 
that is not required for identifying p*

– Test characteristics

– Cost of test

• Formulas for deriving TT and TTT equal:

* where TC = cost of test

 
 

 

D-
TT

D+ D-

D-
TTT

D+ D-

1-spec O  + TC
   TT = p  = 

sens O  + 1-spec O

spec O  - TC
 TTT = p  = 

1-sens O  + spec O


 


 

2.  LR+/- and Sensitivity and Specificity

• Like sensitivity and specificity, likelihood ratios are 
characteristics of test itself

– Combined with data on pretest probability of disease 
[or a transformation of this probability such as prior 
odds] to obtain a post test probability of disease

• IF sensitivity and specificity are independent of 
prevalence, likelihood ratios also independent of 
prevalence

• If test result is truly dichotomous, no differences in result 
from using sensitivity and specificity vs likelihood ratios 
for positive and negative tests
➔ Corollary:  when test result is continuous, post-test 
probabilities from likelihood ratios can differ from     
those from sensitivity and specificity

3.  What Is Relationship Between Likelihood 
Ratios, Odds Ratios, and Relative Risks?

• Likelihood ratios, odds ratios, and relative risks share 
certain features, including that all 3 are commonly 
calculated by use of 2x2 tables, but they also differ

Disease

Present Absent Total

Test result
positive

(a) True positive 
(TP)

(b) False positive 
(FP)

Test +
(a + b) = g

Test result
Negative

(c) False negative 
(FN)

(d) True negative 
(TN)

Test -
(c + d)=h

Total All with disease

(a + c) = e

All normals

(b + d) = f
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Likelihood Ratio and Odds Ratio Similarities

• Both refer to relative frequency of an outcome

– Likelihood ratios: relative frequency of test result 
among those with and without disease

– Odds ratios:  relative frequency of disease among 
those who are and who are not exposed to a risk 
factor for disease

• Both can be used to calculate posterior probabilities of 
disease

Likelihood Ratio and Odds Ratio Differences

• Likelihood ratios and odds ratios have different 
"reference groups"

– LR:  Reference group is the overall population

• LR+ and LR- are used to obtain probabilities 
among those with positive and negative tests 
(dichotomous test, 2 LR)

– OR:  Reference group is the unexposed (or exposed) 
group

• OR is used to obtain probability among those who 
are exposed (unexposed) (dichotomous exposure, 
1 OR)

LR+ and OR

• LR+: Sensitivity / (1-Specificity)

– Sensitivity = a / (a + c) = a / e

– 1-Specificity = b / (b + d) = b / f

– LR+ = (a / e) / (b / f)

= (a * f) / (b * e)

– ORExposed = (a * d) / (b * c)

• LR-: 1-Sensitivity / Specificity

– 1-Sensitivity = c / (a + c) = c / e

– Specificity = d / (b + d) = d / f

– LR- = (c / e) / (c / f)

= (c * f) / (d * e)

– ORUnxposed = (c * b) / (d * a)
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LR and OR Summary

• Calculate 2 LR (LR+ and LR-)

– Each is independent; knowing one provides no 
information about the other

• Usually calculate 1 OR (either OR for exposure or OR for 
lack of exposure)

– OR for exposure and lack of exposure are reciprocals  
and knowing one means knowing the other

Formulas for Calculating Probability of Disease

• Both likelihood ratios and odds ratios can be used to 
estimate probability of disease

• Difference between likelihood ratio and odds ratio 
equations relate to LR/OR AND to p

– P for LR:  probability in population

– P for OR:  probability in reference group

Likelihood Ratio Odds Ratio

LR x p OR x p

(LR x p) + (1-p) (OR x p) + (1-p)

LR and RR

• Relative risk for disease given a positive test

– Risk given a positive test = a / (a + b) = a / g

– Risk given a negative test = c / (c + d) = c / h

– Relative risk = (a / g) / (c / h) = (a * h) / (c * g)

• Primary differences between LR and RR

– For likelihood ratios, work down columns of 2x2 table

– For relative risks, work across rows
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Why Do We Use LR Instead of OR / RR?

• LR vs OR:  More efficient to be able to identify a pre-test 
probability and a set of test characteristics than it is to 
identify a probability of disease given a negative test 
(i.e., 1-negative predictive value)

• LR vs RR

– RR more sensitive to pre-test probability than is LR

– Arrow of causality generally different for RR and LR

• We use RR for an exposure because exposure 
induces disease

• We use an LR for a diagnostic test because for 
many tests, disease induces a change in some 
other biological marker that we then use to infer 
probability of disease

4. Confidence Intervals for Sensitivity and Specificity

• Formulas for CI are available for means / proportions 
and for differences in means / proportions

• Formulas also available for categorical and continuous 
variables

• In which cell does formula for CI for sensitivity and 
specificity fall?

Mean/Proportion
Difference in 
Mean/Proportion

Categorical ? ?

Continuous ? ?

Example of Common Formula CI for Sensitivity

D+ D-

T+ 18 1

T- 2 19

20 20

• Auditory biological marker *

• Sensitivity = 18 / 20 = 0.90

• Specificity = 19/20 = 0.95

* Kraus N, et al. Auditory biological marker of concussion in children. 
Scientific Reports. 6:39009 | DOI: 10.1038/srep39009
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Stata Commands

• Immediate form of Stata's confidence interval program 
(cii) calculates “conservative” (i.e., wider) Clopper 
Pearson confidence intervals

• The syntax is:  cii [Total N] [N with pos/neg test]

. cii 20 18

. cii 20 19

Variable Obs Mean Std. Err [95% Conf. Interval]

20 .9 .067082 .6830173 .9876515

Variable Obs Mean Std. Err [95% Conf. Interval]

20 .95 .048734 .7512672 .9987349

Formula for CI for Sensitivity/Specificity (2)

• Newcombe reviewed 7 formulae for calculating CI for a 
single proportion (including Clopper Pearson) and 
reported that Wilson score confidence interval performs 
well

• where p = sensitivity or specificity; q = 1-p; n = size of sample in 
which sensitivity or specificity was measured; and z = standard 
normal deviate associated with a 2-tailed probability α (e.g., for 95% 
confidence, 1.96)

2 2

2

2np + z   z z  + 4npq
Wilson CL = 

2 (n + z )



Example of Wilson CI for Sensitivity

D+ D-

T+ 18 1

T- 2 19

20 20

• Auditory biological marker

• Sensitivity = 18 / 20 = 0.90

2 2

2

2 2

2

2*20*0.9 + 1.96  - 1.96 1.96  + 4*20*0.9*0.1
LL =  = 0.6990

2 (20 + 1.96 )

2*20*0.9 + 1.96  + 1.96 1.96  + 4*20*0.9*0.1
UL =  = 0.9721

2 (20 + 1.96 )
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Stata Commands, Wilson CI

. cii 20 18,wilson

VERSUS Clopper Pearson: 0.683 – 0.988

Variable Obs Mean Std. Err [95% Conf. Interval]

20 .9 .067082 .6989664 .9721335

Example of Wilson CI for Specificity

• Auditory biological marker

• Specificity = 19 / 20 = 0.95

2 2

2

2 2

2

2*20*0.95 + 1.96  - 1.96 1.96  + 4*20*0.95*0.05
LL =  = 0.7639

2 (20 + 1.96 )

2*20*0.95 + 1.96  + 1.96 1.96  + 4*20*0.95*0.05
UL =  = 0.9911

2 (20 + 1.96 )

D+ D-

T+ 18 1

T- 2 19

20 20

Stata Commands, Wilson CI

. cii 20 19,wilson

• Versus Clopper-Pearson:  .751 to 0.999

Variable Obs Mean Std. Err [95% Conf. Interval]

20 .95 .048734 .7638688 .9911186
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Stata Commands, diagti

• Use of diagti also yields clopper pearson intervals

– Diagti a user written program that can be downloaded 
if you run: help diagt

. diagti 18 2 1 19
--------------------------------------------------------------------------------------------

Prevalence Pr(A) 50% 34% 66.2%

--------------------------------------------------------------------------------------------

Sensitivity Pr( +| A) 90%  68.3% 98.8%

Specificity Pr( -| N) 95%  75.1% 99.9%

Positive predictive value Pr( A| +) 94.7% 74%  99.9%

Negative predictive value Pr(N| -) 90.5% 69.6% 98.8%

--------------------------------------------------------------------------------------------

• Also reports “conservative” Clopper Pearson confidence 
intervals

Confidence Intervals for LR

• As already demonstrated, can use similar calculations to 
derive likelihood ratios and relative risks, but work down 
columns of 2x2 table for likelihood ratios and across 
rows for relative risks

• Can thus rearrange formula for approximate confidence 
intervals for relative risks (Rothman, p. 243-4) so it can 
be applied to likelihood ratios

Stata Command for CI for LR+

csi Ntp Nfp Nfn Ntn

csi 18 1 2 19

Exposed Unexp Total

Cases 18 1 19

Noncases 2 19 21

Total 20 20 40

Risk .9 .05 .475

Point Estimate 95% CI

Risk diff .85 .6874884 1.012512

Risk ratio 18 2.649729 122.2766

Attr frac ex .9444444 .6226603 .9918218

Attr frac pop .8947368

chi2(1) =  28.97  Pr>chi2 = 0.0000

Exposed = D+; Cases = T+ Unexposed = D-; Noncases = T-
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Stata Command for CI for LR-

csi Nfn Ntn Ntp Nfp

csi 2 19 18 1

Exposed Unexp Total

Cases 2 19 21

Noncases 18 1 19

Total 20 20 40

Risk .1 .95 .525

Point Estimate 95% CI

Risk diff -.85 -1.012512 -.6874884

Risk ratio .1052632 .0281583 .393502

Prev frac ex .8947368 .606498 .9718417

Prev frac pop .4473684

chi2(1) =  28.97  Pr>chi2 = 0.0000

Exposed = D+; Cases = T+ Unexposed = D-; Noncases = T-

Stata Commands, diagti

• Obtain similar intervals using diagti
--------------------------------------------------------------------------------------------

Prevalence Pr(A) 50% 34% 66.2%

--------------------------------------------------------------------------------------------

Likelihood ratio (+)   Pr(+|A)/(Pr(+N) 18 2.65% 122%

Likelihood ratio (-)     Pr(-|A)/PR(-|N) .105  .0282 .394

Odds ratio LR(+)/LR(-) 171 16.7

Positive predictive value      Pr( A|+) 94.7% 74%  99.9%

Negative predictive value Pr(N|-) 90.5% 69.6% 98.8%

--------------------------------------------------------------------------------------------

Distributions of Relative Risks and Likelihood Ratios

• Relative risks and likelihood ratios are distributed log 
normal

– Calculate their confidence interval by calculating 
interval for log of ratios and exponentiating log 
interval
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Formulas for Ln LR and SE Ln LR

• The log of the likelihood ratio can be calculated directly 
by taking ln(LR), but using the notation in the 2x2 Table 
in slide 29, it also equals:

ln LR+  =  ln(a) + ln(f) - (ln(b) + ln(e))

ln LR- =  ln(c) + ln(f) - (ln(d) + ln(e))

• The standard error of the log of the likelihood ratio 
equals:

SEln(LR+)  =  ( (1/a) + (1/b) - ((1/e) + (1/f)) )0.5

SEln(LR-)  =  ( (1/c) + (1/d) - ((1/e) + (1/f)) )0.5

Formulas for LR CI

• Formula for lower and upper limits of log of likelihood 
ratio equals:

Log(LR) CI = ln(LR) + (z * SEln(LR))

• Formula for lower and upper limits of the likelihood ratio 
equals:

LR CI = expln(LR) + (z * SEln(LR))

Example, LR+ for Auditory Biological Marker

LR+   =    (18*20) / (1 * 20) = 18.0

Log (LR+) = ln(18) + ln(20) - ln(1) - ln(20)  =  2.8903718

SE, Log(LR+) = (1/18 + 1/1 - (1/20 + 1/20))0.5 =  0.97752522

LL, log(LR+) = 2.8903718 - (1.96 * 0.97752522) =  0.974445753

UL, log(LR+) = 2.8903718 + (1.96 * 0.97752522) = 4.806286

LL, LR+ = exp(0.974445753)  = 2.6497294

UL, LR+ = exp(4.806286)  =  122.27664
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Example, LR- for Auditory Biological Marker

LR- =    (2*20) / (19 * 20) = 0.10526316

Log (LR-) = ln(2) + ln(20) - ln(19) - ln(20)  =  -2.2512918

SE, Log(LR-) = (1/2 + 1/19 - (1/20 + 1/20))0.5 =  0.672779

LL, log(LR-) = -2.2512918 - (1.96 * 0.672779) =  -3.5699144

UL, log(LR-) = -2.2512918 + (1.96 * 0.672779) =  -0.93266919

LL, LR- = exp(-3.5699144)  = 0.02815826

UL, LR- = exp(-0.93266919)  =  0.39350197

Henry’s Concerns, Audio Biological Marker

• (Sample size was determined based on ability to detect 
group differences in F0

12, not variability around sensitivity 
and specificity (results being touted in article)

– Uncertainty assessment suggests substantially more 
evaluation is needed before we can be confident of 
test’s operating characteristics

• Controls were a community sample with no reported 
history of brain injury

– To avoid potential spectrum bias, test should be 
evaluated in population in which it will be used

• Cases: children with head injuries who, upon 
workup, we find had a concussion; controls: 
children with head injuries who, upon workup,     
we find did not have concussion

5.  Sample Size and Test Characteristics

• Formulas for sample size are available for means / 
proportions and for differences in means / proportions

• Formulas also available for categorical and continuous 
variables

• Which formula is appropriate for estimating sample size 
for sensitivity and specificity?

Mean/Proportion
Difference in 
Mean/Proportion

Categorical ? ?

Continuous ? ?
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Sample Size for Sensitivity and Specificity

• Calculating a sample size for a proportion; thus want to 
be in categorical row

• Depending on what we want to establish, might use 
formulas for either column of table

– Might want to establish a maximum length of one of 
the half intervals (e.g., less than or equal to 0.05)

– Might want to ensure that the resulting interval 
excludes some minimum value (e.g., expect the point 
estimate to be 0.9 and want to ensure that we can be 
95% confident it is greater than 0.8)

– Might want to ensure that the test has greater 
sensitivity (or specificity) than a second test

• In the following, we work through the first option    
(others are in reading)

• Can estimate sample size by rearranging equation for 
Wilson score confidence limits and solving for N.  The 
resulting quadratic equation has following roots:

a  =  4p2 +  4L2 - 8pL

b  =  4pz2 +  8L2z2 - (8pLz2 +  4Lz2 +  4pqz2)

c  =  4L2z4 - 4Lz4

where p = sensitivity or specificity; q = 1-p; L = p + the 
maximum length; and z = the sum of the standard 
Normal deviates associated with a 2-tailed α (i.e., for 
95% confidence, 1.96) and a 1-tailed β (i.e.,    for 80% 
power, 0.84)

Sample Size That Ensures That Wider of 2 
Confidence Limits Is No Longer than a Specified 

Length 

Sample Size (2)

• Solving quadratic equation for n, usually yields 2 
estimates for the upper limit (point estimate + maximum 
length) and 2  for the lower limit (point estimate -
maximum length)

• Usually, either 1 or 2 of these 4 estimates will be positive

– If only 1 is positive, it represents the sample size.  If 2 
are positive, the larger represents the sample size
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Sample Size Example, Sensitivity

• If we plan for a sensitivity of 0.9 and want the wider of 
the 2 confidence limits to be no longer than 0.05 (i.e., if 
we want the lower 95% limit for a sensitivity of 0.9 to be 
no smaller than 0.85 and the upper limit to be no larger 
than 0.95), the two positive roots for the quadratic 
equation would be 73 and 196

• The resulting sample size would be 196

• Table D1 reports sample sizes for selected proportions 
and selected maximum lengths of the confidence limits. 
For example, if we plan for a sensitivity of 0.75 and want 
limits that are no wider than 0.1, the sample size would 
be 88.

Sample Size Table *

Target 
Proportion

Maximum Length of Confidence Limits

0.025 0.05 0.10

0.60 or 0.40 1503 381 97

0.70 or 0.30 1349 350 93

0.80 or 0.20 1072 289 81

0.90 or 0.10 673 196 62

Max SS 1537 385 97

*  Table entries represent sample sizes.  "Max SS" represents the largest 
sample size required by any proportion that is greater than 0 and less than 1

Only an Approximation

• Result is rough approximation

– (Based on simulation) tends to understate needed 
sample size as proportion approaches 0.5 or 
tolerance approaches 0

• Stata’s “power oneprop” (power analysis for a one-
sample proportion test) also seems to have problems
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Sample Size and Cohort Designs

• Suppose we plan to evaluate the sensitivity and 
specificity of a test using a cohort design (i.e., we cannot 
determine ahead of time who is truly diseased and who 
is truly nondiseased)

• What are the implications for sample size?

– Total number of patients in sample needs to be the 
larger of :

NSens / Prevalence  or  NSpec / 1-Prevalence

Sample Size and Cohort Designs (2)

• Thus, if we select the maximum sample size for + 0.05 
confidence intervals around a sensitivity and specificity 
(n=385 with disease and 385 without disease), and if we 
expect a prevalence of disease of 0.2 in the population 
used to evaluate the test, will need larger of:

– Sensitivity,  385/0.2  = 1925

– Specificity,  385/0.8  =   481

• With a sample of 1925, can expect to perform test in 385 
people with disease and 1540 without disease

Sample Size for a Likelihood Ratio

• Can also take one of several approaches when 
calculating sample size for likelihood ratios

• Focus on a sample size for wider of 2 asymmetric limits 
ito be no longer than some fixed length

• Rearranging equation for the likelihood ratio confidence 
limits and solving for N:

• where ml equals the maximum length of the confidence limit; and r 
equals the ratio of the number of those in whom disease is absent to 
the number of those in whom disease is present

2

d h
d

2d d

h h

h d

1 1 1
z  (   - (1 + ))

p rp r
n =

p p
(ln( ) - ln(   ml))

p p

n  = r * n




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Sample Size for a Test Characterized by 
Likelihood Ratios

• To determine sample size required for test, rather than 
for one of its likelihood ratios, compute sample size for 
each of expected likelihood ratios, and then use largest 
computed sample size

• For a sensitivity of 0.9 and a specificity of 0.45:

– LR+ would be expected to be 1.6363; LR- would be 
expected to be 0.2222

• If want a confidence limit that is no longer than 0.2 
around LR+ and no longer than 0.5 around LR- and if 
wanted 1 to 1 sampling of those with disease present 
and absent, the required sample size for LR+ would be 
269, while the required sample size for LR- would be 29

6. Sankey and Henry Debate

• Evidence-based diagnostic test types routinely argue 
that healthcare professionals should become probabilists
and use methods we’ve described for complex medical 
decision making

• Sankey has always expressed doubt about this position, 
but I’ve tended to support it

• I’ve been moving towards Sankey’s position for a 
number of reasons

Lack of Evidence

• While those holding out this position tend to be 
evidence-based, there is no evidence that if clinicians 
learned the material and used it in their daily practice, 
that they would be better clinicians

– After lots of thought, I tend to see medical education 
as pattern recognition, not number crunching

• Because some excellent clinicians are NOT 
excellent at math



24

“Advanced” Technical Issues

• Simple version of math we teach is appropriate for 
decision making when there are two options (e.g., 
disease or no disease)

– Math is much more complicated when there are more 
than 2 options

• Simple math tends to assume that test characteristics 
are independent of one another

– Not much evidence exists on independence or lack 
thereof of different test’s results

• Not clear that clinicians have a good sense of their 
treatment threshold

Important For Researchers Developing or 
Evaluating Tests

• Fact that clinicians may be pattern recognizers and not 
probabilists does not imply we can ignore principles 
about what is and what is not a positive test

• When developing and analyzing tests, principles 
essential to determining when tests should be used and 
how they should be interpreted


