

Outline

- Policy relevant parameter for CEA
- Cost data 101
- · Univariate analysis
- · Multivariable analysis

S

Policy Relevant Parameter for CEA (I)

- Policy relevant parameter: differences in the arithmetic, or sample, mean
 - In welfare economics, a project is cost-beneficial if the winners from any policy gain enough to be able to compensate the losers and still be better off themselves
 - Thus, we need a parameter that allows us to determine how much the losers lose, or cost, and how much the winners win, or benefit
 - From a budgetary perspective, decision makers can use the arithmetic mean to determine how much they will spend on a program

Policy Relevant Parameter for CEA (II)

- Other summary statistics such as median cost may be useful in describing the data, but do not provide information about the difference in cost that will be incurred or the cost saved by treating patients with one therapy versus another
 - They thus are not associated with social efficiency
- Lack of symmetry of cost distribution does not change fact that we are interested in the arithmetic mean
- Evaluating some other difference, be it in medians or geometric means, simply because the cost distribution satisfies the assumptions of the tests for these statistics, may be tempting, but does not answer the question we are asking

Cost Data 101

- Common feature of cost data is right-skewness (i.e., long, heavy, right tails)
- Data tend to be skewed because:
 - Can not have negative costs
 - Most severe cases may require substantially more services than less severe cases
 - Certain events, which can be very expensive, occur in a relatively small number of patients
 - A minority of patients are responsible for a high proportion of health care costs

		San	nple Data	iset	
. clear					
. set more	off				
. use rcha	pter5	;			
. sum					
/ariable	Obs	Mean	Std. Dev.	Min	Max
+-					
10	500	250.5	144.4818	1	500
treat	500	.5 2027 5	1200 021	215	10499
cost	500	5027.5	2121140	04799	05110
dissev	500	.347486	.1124773	.025	.729
·+-			E004647		
hlaost	500	1624 959	770 5504	111 0901	1026 021
bleele	500	7857801	145283	4895464	1920.931
DIGALV I	550				-

		Sample	e Dalas	Set	
. describe					
Contains data	from D:\	henry\HGC	lass\rcha	pter5.dta	
obs:	500				
vars:	9			18 Apr 2008 14:25	
size:	16,500 (99.9% of 1	memory fr	ee)	
	storage	display	value		
variable name	type	format	label	variable label	
id	int	%9.0g		Patient ID	
treat	byte	%9.0g		Treatment group	
cost	int	%9.0g		Total cost	
qaly	float	%9.0g		QALYS	
dissev	float	%9.0g		Disease severity	
race	float	%9.0g		Race	
blcost	float	%9.0g		Baseline cost	
blgaly	float	%9.0g		Baseline QALY	
male	float	%9.0g		-	
					11 /R

. summ	mary cost if	treat==0,detai	1	
		Total cos	t	
	Percentiles	Smallest		
1%	622	315		
5%	899	589		
10%	1093	622	Obs	250
25%	1819	640	Sum of Wgt.	250
50%	2825.5		Mean	3015
		Largest	Std. Dev.	1582.802
75%	3752	7361		
90%	4952	7540	Variance	2505262
95%	6103	8232	Skewness	1.03501
99%	7540	10483	Kurtosis	4.910192

	Ins	pect the Cost	: Data (II)	
. sum	mary cost if t	reat==1,detail		
		Total cost		
1	Percentiles	Smallest		
1%	1093	681		
5%	1426	899		
10%	1832	1093	Obs	250
25%	2226	1170	Sum of Wgt.	250
50%	2900.5		Mean	3040
		Largest	Std. Dev.	1168.737
75%	3604	6296		
90%	4404	6470	Variance	1365946
95%	5085	6520	Skewness	1.525386
99%	6470	10499	Kurtosis	9.2349

Typical Distribution Of Cost Data (II)

- · Heavy tails vs. "outliers"
 - Distributions with long, heavy, right tails will have means that differ from the median
 - Median is a biased estimate of the sample mean

	Full S	ample	Trimmed	(3*SD) *
	Group 0	Group 1	Group 0	Group 1
Mean	3015	3040	2927	3010
Median	2826	2901	2816	2885
* p = 0.00 1, respec	03 and 0.000 ctively	01 for nonnor	mality of group	os 0 and

Univariate And Multivariable Analyses Of Economic Outcomes

- Analysis plans for economic assessments should routinely include univariate and multivariable methods for analyzing the trial data
- Univariate analyses are used for the predictors of economic outcomes
 - Demographic characteristics, clinical history, length of stay, and other resource use before entry of study participants into the trial
- Univariate and multivariable analyses should be used for the economic outcome data
 - Total costs, hospital days, quality-adjusted life years

Univariate Analysis of Costs

Univariate Analysis Of Costs

- Report:
 - Arithmetic means and their difference
 - Economic analysis is based on differences in arithmetic mean costs (because n x mean = total), not median costs; thus means are the statistic of interest
 - Measures of variability and precision, such as:
 Standard deviation
 - Quantiles such as 5%, 10%, 50%,...
 - An indication of whether or not the difference in arithmetic means
 - · Occurred by chance
 - · Is economically meaningful

Univariate Analysis: Parametric Tests Of Raw Means

- Usual starting point: T-tests and one way ANOVA
 - Used to test for differences in arithmetic means in total costs, QALYS, etc.
 - Makes assumption that the costs are normally distributed

 Normality assumption is routinely violated for cost data, but t-tests have been shown to be robust to violations of this assumption when:

- Samples moderately large
- · Samples are of similar size and skewness
- Skewness is not too extreme

Steps in Performing a T-test

Evaluate whether or not the outcome is normally distributed
 Stata command: sktest (joint test of skewness and kurtosis)

sktest cost if treat==0 sktest cost if treat==1

- Evaluate whether or not the standard deviations of costs for the treatment groups are similar
 - Stata command: sdtest
 - sdtest cost, by(treat)
- Perform the t-test and interpret it in relationship to the prior two tests
 - Stata command: ttest
 - ttest cost, by(treat) unequal

Test	P-value	Conclusion
Normality		
sktest, group 0	0.0	Failed
sktest, group 1	0.0	Failed
Equality of standard	deviations	
sdtest	0.0	Failed

			T-test fo	r Cost		
. ttest cos	st,by(t	reat)	unequal			
Two-sample	t test	with	unequal var	riances		
Group	Obs	Mean	Std. Err	Std. Dev	[95% Conf.	Interval]
0 1	250 250	3015 3040	100.1052 73.91742	1582.802 1168.737	2817.839 2894.417	3212.161 3185.583
combined	500 3	027.5	62.15917	1389.921	2905.374	3149.626
diff		-25	124.4381		-269.5399	219.5399
diff = Ho: diff =	mean(0 0) - mea Satte	an(1) erthwaite':	s degrees	t = of freedom =	= -0.2009 = 458.304
Ha: dif Pr(T < t)	Ef < 0 = 0.42	04 Pr	Ha: dif: (T > t	£ != 0) = 0.8409	Ha: di Pr(T > t)	iff > 0) = 0.57261

Responses To Violation Of Normality Assumption

- Adopt nonparametric tests of other characteristics of the distribution that are not as affected by the nonnormality of the distribution ("biostatistical" approach)
- Transform the data so they approximate a normal distribution ("classic econometric" approach)
- Adopt tests of arithmetic means that avoid parametric assumptions (most recent development)
- OBSERVATION: If we abandon statistical testing of the arithmetic mean because distributional assumptions of the t-test are violated, does not imply that we are not interested in differences in the arithmetic mean

Response 1: Non-parametric Tests of Other Characteristics of the Distribution

- Rationale: Can analyze the characteristics that are not as affected by the nonnormality of the distribution
 - Wilcoxon rank-sum test
 - Kolmogorov-Smirnov test

Potential Problem with Testing Other Characteristics of the Distribution

- Tests indicate that some measure of the cost distribution differs between the treatment groups, such as its shape or location, but not necessarily that the arithmetic means differ
- The resulting p-values need not be applicable to the arithmetic mean
- While we might decide to compare cost by use of tests like the Mann-Whitney U test, the numerator and denominator of the cost-effectiveness ratio should never be represented as a difference in median cost or effect

Response 2: Transform the Data

- Transform costs so they approximate a normal distribution
 - Common transformations
 - Log (arbitrary additional transformations required if any observation equals 0)
 - Square root
 - Estimate and draw inferences about differences in transformed costs

Estimates and Inferences Not Necessarily Applicable to Arithmetic Mean

- Goal is to use these estimates and inferences to estimate and draw inferences about differences in untransformed costs
 - Estimation: Simple exponentiation of mean of log costs results in geometric mean, which is a biased estimate of the arithmetic mean
 - · Need to apply smearing factor
 - Inference: On the retransformed scale, inferences about the log of costs translate into inferences about differences in the geometric mean rather than the arithmetic mean

Raw Cost	Group 2	Group 3
Obs: 1	15	35
2	45	45
3	75	55
Arithmetic mean	45	45
Log of arithmetic mean	3.806662	3.806662
Geometric mean 🚛	36.993	44.247
Log Cost		
Obs: 1	2.70805	3.555348
2	3.806662	3.806662
3	4.317488	4.007333
Arithmetic mean of logs	3.610734	3.789781
Exp ^(mean In)	36.993	44.247

Primer On The Log Transformation Of Costs

- Observation: Simple exponentiation of the mean of the logs yields the geometric mean of costs, which in the presence of variability in costs (variance, skewness, kurtosis) is a biased estimate of the arithmetic mean
 - All else equal, the greater the variance, the skewness, or kurtosis, the greater the downward bias of the exponentiated mean of the logs
 - e.g., $(25 * 30 * 35)^{0.333} = 29.7196$ $(10 * 30 * 50)^{0.333} = 24.6621$ $(5 * 30 * 55)^{0.333} = 20.2062$ $(1 * 30 * 59)^{0.333} = 12.0664$

"Smearing" factor attempts to eliminate bias from simple exponentiation of the mean of the logs

Retransformation Of The Log Of Cost (I)

Duan's common smearing factor:

$$\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(Z_i - \hat{Z}_i)}$$

where in univariate analysis, \hat{Z}_{i} = the group mean

- Common smearing factor equals the mean of the exponentiation of the log residuals
- Most appropriate when treatment group variances are equivalent

Group	Observ	In	z,−ź	$e^{(z_i - \hat{z}_i)}$
2	1	2.708050	-0.9026834	0.4054801
2	2	3.806663	0.1959289	1.216440
2	3	4.317488	0.7067545	2.027401
Mean, 2		3.610734		
3	1	3.555348	-0.2344332	0.7910191
3	2	3.806663	0.0168812	1.017025
3	3	4.007333	0.2175519	1.24303
Mean, 3		3.789781		
Smear			Ċ	1.116732

Retranst	formation formu	la (7)	
	E(Y ₂) =	• Φ e ⁽² 2)	
	E(Y ₃) =	$\Phi e^{(Z_3)}$	
Retranst	formation		
Group	Φ	e ^(In)	Predicted cost
2	1.116732	36.993	41.3
3	1.116732	44.247	49.4

Common Smearing Retransformation (II)

- Why are the retransformed subgroup-specific means --41.3 and 49.4 -- so different from the untransformed subgroup means of 45?
- Because the standard deviations of the subgroups' logs are substantially different

SD₂ = 0.8224; SD₃ = 0.2265

- The larger standard deviation for group 2 implies that compared with the arithmetic mean, its geometric mean has greater downward bias than does the geometric mean for group 3
- Thus, multiplication of the 2 groups' geometric means by a common smearing factor cannot give accurate estimates for both groups' arithmetic means

Log Transformations and Normal Assumptions

• Log transformations and normal assumptions:

- If met, t-test of the log may be more efficient than ttest of cost
- If not met there are no efficiency gains
- In either case, retransformation translates differences in variance, skewness, and kurtosis into differences in means

Subgroup-specific Smearing Factors (I)

- Manning has shown that in the face of heteroscedasticity – i.e., differences in variance -- use of a common smearing factor in the retransformation of the predicted log of costs yields biased estimates of predicted costs
- We obtain unbiased estimates by use of subgroupspecific smearing factors
- Manning's subgroup-specific smearing factor:

$$\Phi_j = \frac{1}{N_i} \sum_{i=1}^{N_j} e^{(Z_{ij} - \hat{Z}_j)}$$

Group	Observ	In	z, - 2,	e ^(z_i - \hat{z}_i)
2	1	2.708050	-0.9026834	0.4054801
2	2	3.806663	0.1959289	1.216440
2	3	4.317488	0.7067545	2.027401
Mean, 2		3.610734	- (1.21644
3	1	3.555348	-0.2344332	0.7910191
3	2	3.806663	0.0168812	1.017025
3	3	4.007333	0.2175519	1.24303
Mean, 3		3.789781	- 4	1.0170245

Subgrou	up-specific Sm	earing Ret	ransformation (I)
Retrans	formation formu	las	
	$E(\overline{Y}_2) =$	$\Phi_{\text{2}} \text{e}^{(\overline{\text{Z}}_{\text{2}})}$	
	$E(\overline{Y}_3) =$	$\Phi_{3} \textbf{e}^{(\overline{Z}_{3})}$	
 Retrans 	formation		
Group	Φ _i	e ^(In)	Predicted cost
2	1.21644	36.993	45.00
3	1.0170245	44.247	45.00

Subgroup-specific Smearing Retransformation (II)

- All else equal, in the face of differences in variance (or skewness or kurtosis), use of subgroup-specific smearing factors yield unbiased estimates of subgroup means
- Use of separate smearing factors eliminates efficiency gains from log transformation, because we cannot assume that p-value derived for the log of cost applies to the arithmetic mean of cost

Potential Problems with Testing Transformation of the Data (II)

- When we use a t-test to evaluate log cost, the resulting p-value has direct applicability to the difference in the log of cost
- It generally also applies to the difference in the geometric mean of cost (i.e., we see similar p-values for the difference in the log and the difference in the geometric mean)
- The p-value for the log may or may not be directly applicable to the difference in arithmetic mean of untransformed cost

Potential Problems with Testing Transformation of the Data (III)

- Whether the p-value for the log is applicable to the difference in the arithmetic mean of untransformed cost depends on whether the two distributions of the log are normal and whether they have equal variance and thus standard deviation
 - If log cost is normally distributed and if the variances are equal, inferences about the difference in log cost are generally applicable to the difference in arithmetic mean cost
 - If log cost is normally distributed and if the variances are unequal, inferences about the difference in log cost generally will not be applicable to the difference in arithmetic mean cost

13

Potential Problems with Testing Transformation of the Data (IV)

- For economic analysis, the outcome of interest is the difference in untransformed costs (e.g., "Congress does not appropriate log dollars. First Bank will not cash a check for log dollars")
- Thus, the results on the transformed scale must be retransformed to the original scale
- "There is a very real danger that the log scale results may provide a very misleading, incomplete, and biased estimate...on the untransformed scale, which is usually the scale of ultimate interest" (Manning, 1998)
- "This issue of retransformation...is not unique to the case of a logged dependent variable. Any power transformation of y will raise this issue"

	Group 0	Group
Arith Mean	3015	3040
Std. Dev.	1582.802	1168.737
Quantiles		
5%	899	1426
25%	1819	2226
50%	2825.5	2900.5
75%	3752	3604
95%	6103	5085
Skewness	1.03501	1.525386
Kurtosis	4.910192	9.234913
Geom Mean	2600.571	2835.971
Mean In	7.8634864	7.9501397
SD In	.57602998	.37871479
Obs	250	250

Univariate Analysis with STATA

- Provide a log file with full set of commands for all types of (appropriate & inappropriate) univariate tests in STATA
- Provide documentation for bootstrap when we perform multivariable analysis of cost below
- In the next slide, we summarize the results of the univariate tests using STATA

Results from Univariate Analysis of cost

	Plac	Act	Diff	P-val	95% CI
Mean cost:	3015	3040	25	0.8409	-220 to 270
Median cost:	2826	2901	75	0.3722	
Kolm-Smirn:				0.0017	
Log cost					
Common SD:	2901	3164	263	0.0475	
Heterosk:				0.0000	
Bootstrap					
Nonparamet:				0.8050	-210 to 265
Parametric:				0.8371	-214 to 264

Why Do Different Statistical Tests Lead To Different Inferences?

- · The tests are evaluating differences in different statistics
 - T-test of untransformed costs indicates we cannot infer that the arithmetic means are different
 - Wilcoxon rank-sum test also leads to the same inference, but its p-value relates more to the probability that the medians differ
 - Kolmogorov-Smirnov test indicates we can infer that the distributions are different
 - T-test of log costs indicates we can infer that the mean of the logs are different, and thus the geometric means of cost are different
 - Bootstrap leads to same (lack of) inference as t-test and does not make the normality assumption

Univariate Analysis: Summary/Conclusion (I)

- Cost-effectiveness ratios ($\Delta C / \Delta E$) and NMB ([WTP ΔE] ΔC) require an estimate of ΔC and ΔE , the differences in arithmetic means
- If arithmetic means are the most meaningful summary statistic of costs, we should test for significant differences in arithmetic mean costs
 - Parametric test of means
 - Non-parametric test of means (e.g., bootstrap methods)

Univariate Analysis: Summary/Conclusion (II)

- Because of distributional problems related to evaluating the arithmetic mean, there has been a growing use of nonparametric tests such as Wilcoxon and KS tests
 - Problem: Their use divorces hypothesis testing from estimation
 - i.e., we want to 1) estimate the magnitude of the difference in arithmetic means and 2) test whether that difference was observed by chance
 - Use of tests of medians or distributions to address
 the second task does not help with the first task
- Tests of transformed variables such as the log or square root pose similar problems

Multivariate Analysis of Costs

Multivariable Analysis Of Economic Outcomes (I)

- · Even if treatment is assigned in a randomized setting use of multivariable analysis may have added benefits:
 - Improves the power for tests of differences between groups (by explaining variation due to other causes)
 - Facilitates subgroup analyses for cost-effectiveness (e.g., more/less severe; different countries/centers)
 - Variations in economic conditions and practice pattern differences by provider, center, or country may have a large influence on costs and the randomization may not account for all differences
 - Added advantage: Helps explain what is observed (e.g., coefficients for other variables should make sense economically)

Multivariable Analysis Of Economic Outcomes (II)

· If treatment is not randomly assigned, multivariable analysis is necessary to adjust for observable imbalances between treatment groups, but it may NOT be sufficient

Multivariable Techniques Used for the Analysis of Cost

- Common Techniques
 - Ordinary least squares regression predicting costs after randomization (OLS)
 - Ordinary least squares regression predicting the log transformation of costs after randomization (log OLS)
 - Generalized Linear Models (GLM)
- Other Techniques:
 - Generalized Gamma regression (Manning et al. Journal of Health Economics 2005)
 - Extended estimating equations (Basu and Rathouz Biostatistics 2005)

Multivariable Analysis

- Different multivariable models make different assumptions
 - When assumptions are met, coefficient estimates will have many desirable properties
 - With cost analysis, assumptions are often violated, which may produce misleading or problematic coefficient estimates
 - · Bias (consistency)
 - · Efficiency (precision)

Multivariate Analysis with STATA: Outline

- Estimate of adjusted mean difference in costs
 - Start with everyone's "old" favorite: OLS
 Check the fit of the gauss family used in OLS
 Revise family if necessary
 - Start with everyone's "new" favorite: GLM gamma/log
 - Check the fit of the gamma family
 - Revise family if necessary
 - Tune the link
- P-values and confidence intervals for the adjusted mean difference in costs using bootstrapping
 - Parametric tests
 - Non-parametric tests

Ordinary Least Squares (OLS)

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

- Advantages
 - Easy
 - No retransformation problem (faced with log OLS)
 - Marginal/Incremental effects easy to calculate
- Disadvantages
 - Not robust:
 - · In small to medium sized data set
 - In large datasets with extreme observations
 - Can produce predictions with negative costs

					= 10 100	
					F(6,493) 34.09
Source	SS	Df	MS		Prob>F	0.0000
Model	2473e+5	5	416e+5		R-squar	ed 0.2565
Resid	7167e+5	494	145e+4		Adj R-so	0.2490
Total	9640e+5	499	193e+4		Root MS	SE 1204.5
Cost	Coef	Std Err	Т	P> t	[95% C	onf Int]
treat	21.993	107.77	0.20	0.838	-189.74	233.74
dissev	4033.41	516.34	7.81	0.000	3018.92	5047.91
blcost	.3945	.0758	5.20	0.000	0.2455	0.5435
blqaly	-773.30	371.98	-2.08	0.038	-1504.16	-42.45
race	-768.02	118.75	-6.47	0.000	-1001.35	-534.69
cons	1966.32	366.11	5.37	0.000	1247.00	2685.64

Predicted Cost

- Coefficient from OLS (21.99) equals predicted cost difference
- Alternatively, can use mean values for the other explanatory variables and calculate the difference in the predictions for treat = 0 and one for treat = 1:
 - Control: 1966.32+(.347*4033.41)+(1634.86*.3945)-((.786*773.30) + (.506*768.02)) = **3014.43**
 - **Treatment**: 1966.32+(.347*4033.41)+(1634.86*.3945) - ((.786*773.30)+(.506*768.02))+21.99 = **3036.42**

3036.42 - 3014.43 **= 21.99**

3

Method of Recycled Predictions

- Alternative method of using the mean values for the explanatory variables is to use the method of recycled predictions
 - i.e., alternative method for obtaining $\beta_i X_i$
- To recycle predictions, code everyone as if they were in treatment group 0 and make a prediction; then code everyone as if they were in treatment group 1 and make a second prediction gen temp=treat regress cost temp dissev blcost blgaly race

replace temp=0

predict olscost0

replace temp=1

predict olscost1

Results of Recycled Predictions

sum olscost0 olscost1

3038.497 - 3016.503 = 21.99 *

- Recycled predictions are simply another way to use the sample means for the covariates but at the same time make patient-level predictions
- * Differences between this method and multiplication of sample-wid means times the coefficients due to rounding

Generalized Linear Models (GLM)

- · OLS can be run as a generalized linear model
- Rerunning as a GLM facilitates comparison of model fit to the fit of other model specifications
- GLM model has the advantages of the log model, but
 - Doesn't require normality or homoscedasticity,
 Evaluates a transformation of the difference in
 - arithmetic mean cost, not a transformation of individual patient level costs
 - Doesn't raise problems related to retransformation from the scale of estimation to the raw scale
- To run a GLM, must identify a "link function" and a "family" (based on the data)

The Link Function

- Link function directly characterizes how the linear combination of the predictors is related to the prediction on the original scale
- Examples of links include:
 - Identity Link: $\hat{Y}_j = \sum_{i} \beta_i X_{ij}$
 - Log link: $\hat{\mathbf{Y}}_{j} = \exp^{(\sum_{i} \beta_{i} | \mathbf{x}_{j})}$
- Availability of alternative links relaxes linearity assumption
 – E(y/x) = Σβ_iX_i (OLS)
 - $E(\ln(y)/x) = \Sigma \beta_i X_i (\log OLS)$

Which link is used by OLS?

Family

- Specifies distribution that reflects mean-variance relationship
- Currently, families for continuous data available in Stata include:
 - Gaussian (constant variance)
 - Poisson (variance proportional to mean)
 - Gamma (variance proportional to square of mean)
 - Inverse gaussian (variance proportional to cube of mean)
- Availability of the poisson, gamma, and inverse Gausian families relaxes assumption of constant variance

Which family is used by OLS?

replace temp=treat

glm cost temp dissev blc blq race,link(identity)
family(gauss)

General syntax: glm [depvar] [indepvars] [if xxx],link(xxx) family(xxx)

glm	n cost t link	emp dis (identi	ssev Lty)	blcos famil	t blqaly y(gauss)	race,
Variance Link fund Log likel	e function: \ ction: g ihood = -42{	/(u) = 1 (u) = u 53			[Gaussian] [Identity] AIC 17.037	
	Coof	Std Err	-	D>I-I	BIC 7.17e+08	8
cost	Coel	SILLEIT	2	P > 2	957	
temp	21.99324	107.7662	0.20	0.838	-189.2247	233.2112
dissev	4033.414	516.3404	7.81	0.000	3021.406	5045.423
blcost	.3944632	.0758403	5.20	0.000	.2458189	.5431076
blqaly	-773.301	371.9785	-2.08	0.038	-1502366	-44.23705
race	-768.020	118.7549	-6.47	0.000	-1000.775	-535.2645
_cons	1966.319	366.1061	5.37	0.000	1248.765	2683.874
eeict1.dta						AND

Predicted Cost

- As with OLS, coefficient from GLM, identify link, gauss family (21.99) equals predicted cost difference
- As with OLS, can use mean values for the other explanatory variables and calculate one difference in the predictions for treat = 0 and another for treat = 1
- As with OLS, can use recycled predictions

jlm cost t link(ide	reat emp di ntity	issev blo) family	cost blq (gauss)	aly race,	,
replace te	mp=0	-			
predict po	LSC0				
predict po	lscl				
sum polsc*					
	Obs	Mean	Std. Dev.	Min	Max
Variable					
Variable + polsc0	500	3016.503	703.866	1184.116	5527.065

Are We Using the Correct Family?

- The modified Parks test is a "constructive" test that recommends a family given a particular link function
- This test is included in the program we've titled glmdiag
 which is loaded by the following command:

do glmdiagnostic

To perform the test, we first run the glm model and then run glmdiag:

replace temp=treat

glm cost temp dissev blcost blqaly race, link(identity) family(gauss)

glmdiag

GLM Diagnostics, Ident	ity/Gauss	sian
FITTED MODEL: Link = Identity ; Family	= Gaussian	
Results, Modified Park Test (for Family)		
Coefficient: 1.391784		
Family, Chi2, and p-value in descend	ing order of I	ikelihood
Family	Chi2	P-value
Poisson:	1.4021	0.2364
Gamma:	3.3790	0.0660
Gaussian NLLS:	17.6936	0.0000
Inverse Gaussian or Wald	23.6244	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		1.0000
Pregibon Link Test:		0.8913
Modified Hosmer and Lemeshow:		0.3487

GLMD) /	AG Saved Results	
. return list			
scalars:			
r(ln_coef) r(p_family) r(p_gaus) r(p_gaus) r(p_igaus) r(N) r(p_pearson) r(p_pregibon) r(p_h_m) r(ll) r(aic) r(bic)		1.391784 .2364 .000026 .2363797 .0660326 1.2000000000e-06 500 1 .891300000000001 .3487 -4253.36394877669 17.03745579510676 716710494.4875774	
r(deviance) macros: r(family)	:	716713564.503978 "poisson"	

g] rac	lm cost ce, lin	temp k(ider	diss tity	ev bi) fai	lcost bl mily(poi	qaly sson)
Variance Link fun	e function: V ction: g	/(u) = u (u) = u			[Poisson] [Identity]	
Log likel	lihood = -113	3576			AIC 454.33 BIC 219210	
cost	Coef	Std Err	z	P> z	95%	6 CI
temp	113.1149	4.798526	23.57	0.000	103.71	122.52
dissev	4008.434	22.67209	176.80	0.000	3964.00	4052.87
blcost	.3861272	.0036013	107.22	0.000	.3791	.3932
blqaly	-765.3726	16.58928	-46.14	0.000	-797.89	-732.86
race	-746.5739	5.324134	140.22	0.000	-757.01	-736.14
_cons	1925.985	16.49097	116.79	0.000	1893.664	1958.307
• PR	OBLEM WIT	TH P-VALU	ES?			

GEW Diagnostics, Ident	lity/Poiss	on
	= Poisson	
Results, Modified Park Test (for Family)		
Coefficient: 1.436638		
Family, Chi2, and p-value in descendi	ng order of l	ikelihood
Family	Chi2	P-value
Poisson:	1.7001	0.1923
Gamma:	2.8301	0.0925
Gaussian NLLS:	18.4046	0.0000
Inverse Gaussian or Wald	21.7947	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		0.8818
Pregibon Link Test:		0.7021
Modified Hosmer and Lemeshow:		0.5134

Predicted Cost

- As with OLS, coefficient from GLM, identify link, poisson family (113.11) equals predicted cost difference
- As with OLS, can use mean values for the other explanatory variables and calculate one difference in the predictions for treat = 0 and another for treat = 1
- As with OLS, can use recycled predictions
- Unlike OLS, standard errors for poisson family are wrong (we'll need to bootstrap the model if we want reasonable standard errors)

Iden	tity/l	Poisson	Recycle	ed Predi	ctions	
glm cost ter family(po replace tem predict ppo replace tem predict ppo	mp di isson p=0 isc0 p=1 isc1	issev blo n)	cost blq	aly race,	link(ide	ntity)
sum ppoisc*						
Variable	Obs	Mean	Std. Dev.	Min	Max	
ppoisc0 ppoisc1	500 500	2970.943 3084.057	691.9996 691.9996	1162.989 1276.104	5450.039 5563.153	
DIFFERENCE:	113					

Cha	Change in Family Leads to Fairly Big Differences in Point Estimate (Not Sure About SE)						
Cost	Coef.	Std Err	z	P> z	[95% Co	onf Interval]	
Gaussia	an / Ider	ntity					
temp	21.99	107.77	0.20	0.838	-189.224	7 233.2112	
Poissor	n / Ident	ity					
temp	113.11	4.80	23.57	0.000	103.71	122.5198	
 Cha dra Cha – I – I 	 Change in family not "supposed" to affect coefficient dramatically (consistency) Change in coefficient may be due to: Lack of significance of coefficients Incorrect specification of link or covariates 						

Suppose We Started with GLM Log/Gamma

- Log link more commonly used in literature than identity link
- When we adopt the log link, we are assuming: $\label{eq:link} ln(E(y/x)){=}X\beta$
- GLM with a log link differs from log OLS in part because in log OLS, we are assuming: $E(ln(y)/x){=}X\beta$
- In(E(y/x) ≠ E(In(y)/x)
 i.e. log of the mean ≠ mean of the log costs

Variable	Group 2	Group 3
Observations		
1	15	35
2	45	45
3	75	55
Arithmetic mean	45	45
Log, arith mean cost	3.806662	3.806662 *
Natural log		
1	2.70805	3.555348
2	3.806662	3.806662
3	4.317488	4.007333
Arith mean, log cost	3.610734	3.789781 †

Variable	Coefficient	SE	z/T	p value
GLM, gamr	ma family, log lir	nk		
Group 2 (0.000000	0.405730	0.00	1.000
Constant	3.806662	0.286894	13.27	0.000
Log OLS				
Group 2 (0.179048	0.492494	0.36	0.74
Constant	3.610734	0.348246	10.32	0.000

link(log) family(gamma)	
Variance function: $V(u) = u^2$ [Gamma]Link function: $g(u) = ln(u)$ [Log]AIC:18.00062	
Log likelihood = -4494.155729 BIC -2988.518	
cost Coef Std Err z P> z 95% Cl	
temp .0446782 .0356359 1.25 0.2100251669 .1145232	2
dissev 1.409376 .1739606 8.10 0.000 1.06842 1.750333	
blcost .000122 .0000257 4.78 0.000 .0000724 .0017300	
blqaly2579657 .1223431 -2.11 0.0354977537018379	ô
race2613111 .0395492 -6.61 0.0003388262183796	1
_cons 7.610573 .1220851 62.34 0.000 7.371291 7.849856	_
eeldt da	

Retransformation

- GLM avoids the problem that simple exponentiation of the results of log OLS yields biased estimates of predicted costs
- For the identity link, as for OLS, the coefficient represents the incremental cost
- For other (nonlinear) links such as the log, it does not avoid the other complexity of nonlinear retransformations (also seen in log OLS models):
 - On the transformed scale, the effect of the treatment group is estimated holding all else equal; however, retransformation (to estimate costs) reintroduces the covariate imbalances

Predicted Cost

- Coefficient from GLM, log link, gamma family (.0447) does not equal predicted cost difference
- Cannot use mean values for the other explanatory variables and calculate one difference in the predictions for treat = 0 and another for treat = 1
 - The mean of nonlinear retransformations does not equal the nonlinear retransformation of the mean
- Can use recycled predictions to create an identical covariate structure for the two groups

Log/Gamma Recycled Predictions replace temp=0 predict pglmglc0 replace temp=1 predict pglmglc1 sum pglmglc* Variable Obs Mean Std. Dev. Min Max pglmglc0 | 500 2964.034 733.7266 1542.916 6767.186 pglmglc1 | 500 3099.465 767.2515 1613.414 7076.388 DIFFERENCE: 135

Recyc	led vs Treat	tment-Specifi	c Prediction	S
. replace	temp=treat			
. quietly glink(log	glm cost tem) family(gam	p dissev blcos na)	st blgaly rac	:e,
. predict p (option mu	pcost assumed; pro	edicted mean o	cost)	
. tab trea	t,sum(pcost)			
Treatment group	Summary Mean	of predicted Std. Dev.	mean cost Freq.	
0 1	2973.8331 3089.2184	789.66446 705.44167	250 250	
Total	3031.5257	750.21371	500	
DIFFERENCE	: 115			

Recycled vs Treatment-Specific Predictions (II)

- Difference between mean of the recycled predictions (135) and mean of treatment group-specific predictions (115) due to whether or not covariates are balanced
- Given the log link is a multiplicative model, If we want to hold all-else equal during both estimation AND prediction, must use method of recycled predictions

ITTED MODEL: Link = Log ; Family = 0	Gamma	
Results, Modified Park Test (for Family))	
Coefficient: 1.5912		
Family, Chi2, and p-value in descend	ding order of I	ikelihood
Family	Chi2	P-value
Gamma:	1.9560	0.1619
Poisson:	4.0897	0.0431
Inverse Gaussian or Wald	23.2272	0.0000
Gaussian NLLS:	29.6281	0.0000
Results of tests of GLM Log link		
Pearson Correlation Test:		.2460
Pregibon Link Test:		.1273
Modified Hosmer and Lemeshow		.6199

What's the Appropriate Link?

- So far we have evaluated the identity link (with an "optimized" poisson family) and the log link (with an "optimized" gamma family)
- · But what link should we use?

Selecting a Link Function

- There is no single test that identifies the appropriate link
- Instead can employ multiple tests of fit
 - Pregibon link test checks linearity of response on scale of estimation
 - Modified Hosmer and Lemeshow test checks for systematic bias in fit on raw scale
 - Pearson's correlation test checks for systematic bias in fit on raw scale
- Ideally, all 3 tests which are also reported by glmdiag will yield nonsignificant p-values

ITTED MODEL: Link = Identity ; Fam	ily = Poisson	
Coofficient: 1 426628	iiy)	
Family, Chi2, and p-value in desce	ending order of I	ikelihood
Family	Chi2	P-value
Poisson:	1.7001	0.1923
Gamma:	2.8301	0.0925
Gaussian NLLS:	18.4046	0.0000
Inverse Gaussian or Wald	21.7947	0.0000
Results of tests of GLM Identity lin	k	
Pearson Correlation Test:		0.8818
Pregibon Link Test:		0.7021
Modified Hosmer and Lemes	how:	0.5134

Rerun Log/Gamma and Assess Fit Statistics glm cost temp dissev bl* race, link(log) family(gamma)

glmdiag

TTED MODEL: Link = Log : Family =	Gamma	
Results, Modified Park Test (for Fami	Iv)	
Coefficient: 1.5912	<i>,</i> ,	
Family, Chi2, and p-value in desce	nding order of I	ikelihood
Family	Chi2	P-value
Gamma:	1.9560	0.1619
Poisson:	4.0897	0.0431
Inverse Gaussian or Wald	23.2272	0.0000
Gaussian NLLS:	29.6281	0.0000
Results of tests of GLM Log link		
Pearson Correlation Test:		.2460
Pregibon Link Test:		.1273
Modified Hosmer and Lemes	how:	.6199

				-

Goodness of Fit Statistics

Test	Ident/Pois	Log/Gam
Pearson Correlation Test:	0.8818	.2460
Pregibon Link Test:	0.7021	.1273
Modified Hosmer and Lemeshow	0.5134	.6199

- Neither link dominates the other (less significant fit statistics for all 3 tests) and we haven't fully worked out how to trade-off among the tests, but identity/poisson model appears better than log/gamma model
- But can we improve the link?

chapter5.dta

Can We Improve the Link?

- Stata's power link provides a flexible link function
 It allows generation of a wide variety of named and unnamed links, e.g.,
 - power 2: $\hat{U}_i = (B_i X_i)^{0.5}$
 - power 1 = Identity link; $\hat{u}_i = B_i X_i$
 - power .5 = Square root link; $\hat{u}_i = (B_i X_i)^2$
 - power .25: $\hat{U}_{i} = (B_{i}X_{i})^{4}$
 - power 0 = log link; $\hat{U}_i = \exp(BiXi)$
 - power -1 = reciprocal link; $\hat{U}_i = (B_i X_i)^{-1}$
 - power -2 = inverse quadratic; $\hat{U}_i = (B_i X_i)^{-0.5}$

Can We Improve the Link? (2)

- Iteratively evaluate power links (in 0.1 intervals) between -2 and 2
 - Use the modified Park test to select a family
 - Rerun the GLM with the power and preferred link
 - Evaluate the fit statistics
 - Don't show you the results here, but we then fine tune the power link in 0.01 intervals within candidate regions of the power link

Power 0.65 Link / Poisson Family

Power 0.65 Link / Poisson Family

replace temp=treat

eeict1.dta

glm cost temp dissev blcost blqaly race, link(power .65) family(poisson)

gln	n cost t link(j	emp dia power .	ssev b 65) f	olcos amily	t blqaly v(poisson	race,
Variance function: $V(u) = u$ [Poisson]Link function: $g(u) = u^{A}(.65)$ [Power]						
Log like	lihood = -113	8515.3			AIC 454.0853 BIC 219088.2	3
Cost	Coef	Std Err	z	P> z	95%	6 CI
temp	3.493932	.1927675	18.13	0.000	3.116115	3.87175
dissev	161.4855	.9285280	173.92	0.000	159.6656	163.3053
blcost	.0150344	.0001392	107.97	0.000	.0147615	.0153073
blqaly	-30.51369	.6645974	-45.91	0.000	-31.81628	-29.21111
race	-30.27	.2133011	-141.91	0.000	-30.68807	-29.85194
_cons	138.8326	.6584566	210.85	0.000	137.542	140.1231
eeict1.dta						, Ó,

ITTED MODEL: Link = Power .65 ; Fa	amily = Poissor	1
Results, Modified Park Test (for Fami	ly)	
Coefficient: 1.495248		
Family, Chi2, and p-value in desce	nding order of I	ikelihood
Family	Chi2	P-value
Poisson:	2.3212	0.1276
Gamma:	2.4111	0.1205
Gaussian NLLS:	21.1587	0.0000
Inverse Gaussian or Wald:	21.4285	0.0000
Results of tests of GLM Log link		
Pearson Correlation Test:		.9027
Pregibon Link Test:		.7469
Modified Hosmer and Lemes	how:	.5870

Power 0.65/P	oisson Recycle	ed Prediction	s
replace temp=0 predict pglmppc0 replace temp=1 predict pglmppc1			
sum pglmppc*			
Variable Obs	Mean Std. Dev.	Min	Max
pglmppc0 500 298 pglmppc1 500 307	3.316 704.3185 71.642 711.5133	1338.796 580 1406.172 593	04.318 L6.306
DIFFERENCE: 88			

	ld/Gau	Id/Pois	Log/Gam	0.65/Pois
Pearson	1.0000	0.8818	0.2460	0.9027
Pregibon	0.8913	0.7021	0.1273	0.7469
Mod H&L	0.3487	0.5134	0.6199	0.5870
Summary	0.4360	0.3394	1.4746	0.2441
Difference	22	113	135	88
P-value	0.84	0.26*	0.21	0.39*
* P-value de	erived fror	n bootstra	ap (discuss	sed next)

Bootstrapping the Multivariable Models

- Random draw with replacement from each treatment group, thus creating multiple bootstrap samples (also referred to as replicates)
- We bootstrap these models primarily to estimate nonparameteric p-values and CI on the cost (and QALY) scale AND to calculate standard errors for parametric tests
- In what follows, we use Stata's most basic bootstrap command, bsample

Structure of the Bootstrap

- Create a dataset to store estimates (bsmvpred.dta)
 - Each observation in the dataset represents the results from a separate bootstrap replicate
- Create a loop that will draw bootstrapped samples
 - Loop N times (we commonly use 2-3000 replicates, but in the current example we set N to 200
- Within each bootstrap sample:
 - Run the GLMs
 - Use method of recycled predictions to predict cost

 - Estimated the predicted means
 Keep 1 observation; create variables that represent
 Tradicted means: append the means to the dataset created to store the bootstrap results

bsmultiv.do

- We've provided the bootstrap program bsmultiv.do (listed in the appendix to these slides)
- bsmultiv.do is a purpose-built bootstrap program for the current dataset which estimates the 6 glm models we evaluated above in multiple bootstrapped datasets
- · Current program set at 200 replicates (to save time in class), but 1000-3000 replicates recommended
- · You can modify this program for your own dataset

	Selected	BUUSI	ар кер	licales,	bsilivpi	
	pglmigc0	pglmigcl	pglmipc0	pglmipc1	pglmlgc0	pglmlgc1
1.	3108.104	3086.328	3061.173	3133.259	3055.328	3141.872
2.	2874.748	2848.656	2822.54	2900.865	2820.564	2906.826
3.	3046.532	3050.864	3002.845	3094.551	2998.789	3099.822
4.	2981.5	3046.561	2943.12	3084.94	2936.017	3115.354
5.	2947.865	3088.323	2897.962	3138.226	2887.306	3157.838
_		2111 880		2140 076		2164 605
ь.	2991.154	3111.779	2960.855	3142.076	2955.8	3164.625
/.	2922.351	2956.017	2868.459	3009.909	2869.413	3020.215
8.	3126.857	3076.667	3078.587	3124.937	3075.845	3140.477
9.	2978.72	2997.372	2957.52	3018.572	2963.5	3025.937
10.	3077.117	2985.335	3037.682	3024.77	3024.759	3046.886
11.	3103.544	3119.24	3066.059	3156.725	3049.399	3172.307
12.	2935.81	2977.378	2897.605	3015.583	2874.975	3044.03
13.	2919.418	2900.594	2874.812	2945.201	2868.466	2951.305
						~

Sur	nmari	ze (3000	Draws),	bsmvpre	d.dta
Variable	Obs	Mean	Std. Dev	. Min	Max
pglmigc0 pglmigc1 pglmipc0 pglmipc1 pglmlgc0	3000 3000 3000 3000 3000	3017.178 3038.906 2972.174 3083.909 2963.875	90.61395 71.1834 87.65356 70.30924 88.59197	2719.115 2789.372 2662.726 2820.354 2654.125	3409.561 3309.99 3357.739 3353.042 3350.047
pglmlgcl pglmppc0 pglmppc1 pglmigq0	3000 3000 3000 3000 3000 3000	3099.931 2984.217 3071.829 .5733505 .6147949	73.44394 88.75463 70.75923 .0135277 .012695	2834.418 2677.809 2811.923 .5249925 .5737574	3388.661 3373.078 3345.69 .6199619 .6603948
pglmipq0 pglmipq1 pglmppq0 pglmppq1	3000 3000 3000 3000	.5733622 .6147833 .5737368 .6144159	.0134999 .0126267 .0134739 .0125472	.524086 .5750274 .5234635 .5737772	.6191651 .6578885 .6183268 .6558302

	5	Summariz	e Differer	nces	
pglmigcd	3000	21.72763	106.684	-359.7065	359.5251
pglmipcd pglmlgcd pglmppcd pglmipqd + pglmppqd	3000 3000 3000 3000 3000 3000 3000	111.7347 136.0555 87.6113 .0414444 .0414211 .0406791	100.3923 106.5739 102.8321 .0179779 .0178393 .0176908	-256.0615 -237.0095 -287.0056 0197337 01814 0164816	426.7947 456.8499 409.1807 .098896 .100709 .1013637

Bootstrap: Non-parametric Tests

- P-value: count the number of replicates for which the difference is above and below 0 (yielding a 1-tailed test of the hypothesis of a cost difference)
- CI: Order the differences from highest to lowest; identify the difference for the replicates that represent the 2.5th and 97.5th percentiles

- Because each bootstrap replicate represents a mean difference, when one sums the replicates, the reported "standard deviation" is the standard error
 - P-value: Difference in means / SE = t statistic
 - CI: Difference in means <u>+</u> 1.96 SE = 95% CI

GLM Link/fam	PE	P-val GLM	BS SE	P-val BS	Nonpar 95% Cl	Par 95% CI
Cost						
id/gau	22	.838	107	.837	-191 to 231	-188 to 232
id/pois	113	.000	100	.264	-84 to 310	-86 to 312
log/gam	135	.210	107	.208	-74 to 344	-76 to 346
pow/pois	88	.000	103	.393	-114 to 290	-114 to 291
		.024				
pow/pois		.4365	.018	.024	.0063 to .0754	.0060 to .07.56

Extended Estimating Equations

- Basu and Rathouz (2005) have proposed use of extended estimating equations (EEE) which estimate the link function and family along with the coefficients and standard errors
- Tends to need a large number of observations (thousands not hundreds) to converge
- Currently can't take the results and use them with a simple GLM command (makes bootstrapping resulting models cumbersome)

Special Cases (I)

- A substantial proportion of observations have 0 costs
 May pose problems to regression models
 - Commonly addressed by developing a "two-part" model in which the first part predicts the probability that the costs are zero or nonzero and the second part predicts the level of costs conditional on there being some costs
 - 1st part : Logit or probit model
 - 2nd part : GLM model

Special Cases (II)

- · Censored costs
 - Results derived from analyzing only the completed cases or observed costs are often biased
 - Need to evaluate the "mechanism" that led to the missing data and adopt a method that gives unbiased results in the face of missingness

Multivariate Analysis: Summary/Conclusion

- Use mean difference in costs between treatment groups estimated from a multivariable model as the numerator for a cost-effectiveness ratio
- Establish criteria for adopting a particular multivariable model for analyzing the data prior to unblinding the data (i.e., the fact that one model gives a more favorable result should not be a reason for its adoption)
- Given that no method will be without problems, it may be helpful to report the sensitivity of our results to different specifications of the multivariable model

References

- Basu A. Rathouz PJ. Estimating Marginal and Incremental Effects on Health Outcomes Using Flexible Link and Variance Function Models. Biostatistics 2005;6:93-109.
- Duan N. Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc. 1983;78:605-10.
- Manning WG. The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of Health Economics. 1998;17:283-295.
- Manning, WG. Mullahy J. Estimating log models: To transform or not to transform? Journal of Health Economics 2001; 20(4): 461-494.
- Manning WG, Basu A, Mullahy J. Generalized Modeling approaches to risk adjustment of skewed outcomes data. National Bureau of Economic Research, Technical Working Paper 293. http://www.nber.org/papers/T0293

Bootstrap Program: Creating bsmvpred

 * drop _all is similar to clear, but maintains local variables, scalars, and matrices drop _all

gen pglmigc0=. gen pglmigc1=. gen pglmipc0=. gen pglmipc0=. gen pglmipc0=. gen pglmppc1=. gen pglmppc0=. gen pglmipq0=. gen pglmipq0=. gen pglmipq1=. gen pglmppq0=. gen pglmppq1=. save bsmvpred.replace

Bootstrap Program: Starting the Bootstrap

set more off * If you want to be able to replicate your results, set seed

*set seed 2345

* Major loop: runs N times: forvalues i=1/N {

forvalues i=1/200 {

* Displays a count every 50 iterations (to make sure something is happening) if ('i'/50)==round(('i'/50),1) { display 'i'

}

drop _all

use rchapter5

* strata(treat): maintains sample size per group * cluster(id): if participants had multiple observations, sample all of them bsample, strata(treat)

Bootstrap Program: Cost Estimation (1)

gen temp=treat

quietly glm cost temp dissev bl* race,link(identity) family(gauss) quietly replace temp=0 quietly predict pglmigc0 quietly replace temp=1 quietly predict pglmigc1

quietly replace temp=treat quietly glm cost temp dissev bl* race,link(identity) family(poisson) quietly replace temp=0 quietly predict pglmipc0 quietly replace temp=1 quietly predict pglmipc1

Bootstrap Program: Cost Estimation (2)

quietly replace temp=treat quietly glm cost temp dissev bl* race male,link(log) family(gamma) quietly replace temp=0 quietly predict pglmlgc0 quietly replace temp=1

quietly predict pglmlgc1 quietly replace temp=treat

quietly glm cost temp dis race blc blq,link(power .65) family(poisson) quietly replace temp=0 quietly predict pglmppc0 quietly replace temp=1

quietly predict pgImppc1

Bootstrap Program: QALY Estimation

capture drop nqaly sum qaly, meanonly local rmax=r(max) gen nqaly=r(max)-qaly save temp,replace

quietly replace temp=treat quietly regress nqaly temp dissev blc blq quietly replace temp=0 quietly predict pglmigq0 quietly predict pglmigq1 quietly replace pglmigq0=`rmax'-pglmigq0 quietly replace pglmigq1=`rmax'-pglmigq1

Bootstrap Program: QALY Estimation

quietly replace temp=treat quietly glm qaly temp dissev blcost blqaly,family(poisson) link(identity) quietly replace temp=0 quietly predict pglmipq0 quietly predict pglmipq1 quietly replace pglmipq0=`rmax'-pglmipq0 quietly replace pglmipq1=`rmax'-pglmipq1

quietly replace temp=treat quietly glm qaly temp dissev blc blq,family(poisson) link(power 1.56) quietly replace temp=0 quietly predict pglmppq0 quietly predict pglmppq1 quietly replace pglmppq0='rmax'-pglmppq0 quietly replace pglmppq1='rmax'-glmppq1

Bootstrap Program: Estimate Treatment Group Mean Costs

sum pglmigc0,meanonly local pglmigc0=r(mean) sum pglmigc1,meanonly local pglmigc1=r(mean) sum pglmipc0,meanonly local pglmipc0=r(mean) sum pglmipc1,meanonly local pglmipc1=r(mean) sum pglmlgc0,meanonly local pglmlgc0=r(mean) sum pglmlgc1,meanonly local pglmlgc1=r(mean) sum pglmppc0,meanonly local pglmppc0=r(mean) sum pglmppc1,meanonly local pglmppc1=r(mean)

Bootstrap Program: Estimate Treatment Group Mean QALYS

sum pglmigq0,meanonly local pglmigq0=r(mean) sum pglmigq1,meanonly local pglmigq1=r(mean) sum pglmipq0,meanonly local pglmipq0=r(mean) sum pglmipq1,meanonly local pglmipq1=r(mean) sum pglmppq0,meanonly local pglmppq0=r(mean) sum pglmppq1,meanonly local pglmppq1=r(mean)

Bootstrap Program: Keep 1 Row of Data, Substitute Group Means, Append and Save

quietly keep if _n==1

quietly keep if _n==1 quietly replace pglmigc0⁻ pglmigc0' quietly replace pglmigc1⁻ pglmigc1' quietly replace pglmipc1⁻ pglmipc1' quietly replace pglmipc1⁻ pglmipc1' quietly replace pglmigc1⁻ pglmigc1' quietly replace pglmpc1⁻ pglmigc1' quietly replace pglmpc1⁻ pglmipc1' quietly replace pglmpc1⁻ pglmipq1' quietly replace pglmipq0⁻ pglmipq0' quietly replace pglmppq0⁻ pglmppq0' quietly replace pglmppq1⁻ pglmppq1' keep pglmigc0-pglmppq1 keep pglmigc0-pglmppq1 quietly append using bsmvpred quietly save bsmvpred,replace

Bootstrap Program:Use bsmvpred; Clean Up Empty Row; Calculate Mean Differences

drop _all use bsmvpred drop fr gjimigc0==. capture drop pglmigcd capture drop pglmigcd capture drop pglmppd capture drop pglmipgd capture drop pglmipgd capture drop pglmipgd

gen pglmigcd=pglmigc1-pglmigc0 gen polsipcd=pglmigc1-pglmigc0 gen pglmigc4=pglmigc1-pglmigc0 gen pglmigc4=pglmig1-pglmigc0 gen pglmigq4=pglmig1-pglmigq0 gen pglmipq4=pglmipq1-pglmipq0 gen pglmipq4=pglmpp1-pglmppq0

save,replace

Appendix 2: QALY Evaluation

 \odot

QALY Evaluation

- While substantial attention has been paid to models for the evaluation of cost, substantially less has been paid to models for the evaluation of QALYs
- The QALY distribution shares certain complicating features with costs, but also has its own complicating features
 - Predictions should be confined to the theoretical range of the preference assessment instrument (e.g., -0.594 and 1.0 for the EQ-5D)
 - Long, heavy LEFT tails
 - (Particularly for pre-scored instruments) Often multimodal (see Figure on next slide)
 - (Commonly) Large fraction of 1s

Multivariable Approaches

- There are the beginnings of a literature on multivariable approaches
 - OLS (or GLM with identity link and gauss family) probably commonest
 - Alternatives
 - GLM with family (and link) diagnostics
 - GLM with a logit link and binomial 1 family or it's equivalent, beta regression (need specialized code for Stata)
 - (When there are a large fraction of 1s) 2-part models
- While we demonstrate some of these methods, more work is required before we will be able to identify best practice

Implemented Models

- · Start with GLM gauss/identity
 - Evaluate GLM diagnostics
 - If necessary, reestimate GLM with better fitting family
- · Also assess GLM gamma/log
 - Evaluate GLM diagnostics
 - If necessary, reestimate GLM with better fitting family

Common Starting Point: GLM with Gauss/Identity							
glm qal	y temp diss	ev blcost	blqaly,	, link(i	identity) fami	ly(gauss)	
Variance Link fun	Variance function:V(u) = 1[Gaussian]Link function:g(u) = u[Identity]						
Log like	lihood = 85.0	080395			AIC3203216 BIC -3055.401		
qaly	Coef	Std Err	z	P> z	95%	CI	
temp	.0627749	.0183515	3.42	0.001	.0268067	.0987432	
dissev	1512017	.0831731	-1.82	0.069	314218	0118147	
blcost	0000359	.0000121	-2.96	0.003	000060	0000122	
blqaly	.207374	.0633239	3.27	0.001	.0832614	3314867	
_cons	.511092	.0620345	8.24	0.000	.3895067	63267 <u>73</u>	
eeict1.dta							

GLM DIAGNOSTICS, Identity/Gauss

Gaussian	
g order of lik	celihood
Chi2	P-value
4.2582	0.0391
18.3496	0.0000
42.2987	0.0000
76.1054	0.0000
	1
	.6741
	.8335 🔤
	9 order of lik Chi2 4.2582 18.3496 42.2987 76.1054

		Troubling	Findings		
 Coefficier have any named fa When coi subtractir possible of instrumer 	nt on the families milies a nfrontec ng all ob observa nts)	e modified F s that are ne are all signifi d with coeffic oservations ation (e.g., 1	Park test is n egative) and cantly reject cient < -0.5, from maximu .0 for most,	egative (v p-value f ted consider um theore if not all,	we don't or the etically
gen nqaly=1- sum qaly nqa	qaly ly				
Variable	0bs	Mean	Std. Dev.	Min	Max
qaly nqaly	500 500	.5941653 .4058347	.2121148	.05679 .03178	.96882 .94321

	Estimate	NQALY,	GLM	with (Gauss/Identity
glm nqa	ly temp dis	sev blcost	: blqalj	7, link	(identity) family(gauss)
Variance Link fun	e function: N ction: g	/(u) = 1 (u) = u			[Gaussian] [Identity]
Log like	lihood = 85.0	080395			AIC3203216 BIC -3055.401
nqaly	Coef	Std Err	Z	P> z	95% CI
temp	0627749	.0183515	-3.42	0.001	09874320268067
dissev	.1512017	.0831731	1.82	0.069	0118147 .314218
blcost	.0000359	.0000121	2.96	0.003	.0000122 .000060
blqaly	207374	.0633239	-3.27	0.001	33148670832614
_cons	.488908	.0620345	7.88	0.000	.3673227 .6104933
eeict1.dta	+				

:	* RECYCLED RE	DICTION	IS			
1 1 1 1 1 1	replace temp= predict pglmi replace temp= predict pglmi replace pglmi replace pglmi	0 9q0 1 9q1 9q1-p	oglmigq0 oglmigq1			
5	sum pglmipq*					
1	Variable	0bs	Mean	Std. Dev.	Min	Max
1	pglmigq1	500 500	.5627779	.0473131 .0473131	.4202132 .4829882	.6662163 .7289913

02	identity/Ga	uss
FITTED MODEL: Link = Identity ; Fami	ily = Gaussian	
Results, Modified Park Test (for Famil	iy)	
Coefficient: .686724		
Family, Chi2, and p-value in desce	nding order of I	ikelihood
Family	Chi2	P-value
Poisson	0.9443	0.3312
Gaussian NLLS:	4.5374	0.0332
Gamma:	16.5942	0.0000
Inverse Gaussian or Wald	51.4871	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		1
Pregibon Link Test:		.6741
Modified Hosmer and Lemesho	w:	.8335

C	Change F	amily to	Poiss	on an	d Rerun M	odel
glm nqa	ly temp dis	ssev blcost	blqalı	7, link(identity) fa	mily(poisson)
Variance Link fun	e function: \ ction: g	/(u) = u (u) = u			[poisson] [Identity]	
Log like	lihood = -33	5.2046527			AIC 1.360819 BIC -3023.244	4
nqaly	Coef	Std Err	z	P> t	95%	CI
Temp	06313	.0566142	-1.12	0.265	1740918	.0478318
dissev	.16252	.2609842	0.62	0.533	3489997	.6740397
blcost	.0000373	.0000387	0.96	0.335	0000385	.0001132
blqaly	199954	.1926091	-1.04	0.299	5774608	.1775532
_cons	.477935	.190924	2.50	0.012	.1028309	.8512394
eeict1.dta						

GLM DIAGNOSTICS, Identity/Poisson

FITTED MODEL: Link = Identity ; Family :	= Poisson	
Results, Modified Park Test (for Family)		
Coefficient: .703074		
Family, Chi2, and p-value in descendi	ng order of I	ikelihood
Family	Chi2	P-value
Poisson	0.8796	0.3483
Gaussian NLLS:	4.9314	0.0264
Gamma:	16.7804	0.0000
Inverse Gaussian or Wald	52.6339	0.0000
Results of tests of GLM Identity link		
Pearson Correlation Test:		.9396
Pregibon Link Test:		.6961
Modified Hosmer and Lemeshow:		.8949 🗖

* RECYCLED R	EDICTIC	INS			
replace temp predict pglm replace temp predict pglm replace pglm replace pglm sum pglmipg*	=0 ipq0 =1 ipq1 ipq0=1- ipq1=1-	pglmipq0 pglmipq1			
Variable	Obs	Mean	Std. Dev.	Min	Max
pglmigq0 pglmigq1	500 500	.5626003	.0479873	.4175745 .4807045	.6685126 .7316426

	Pow	/er 1.5 L	.ink / F	Poisso	n Family	
glm nqal	y temp diss	ev blcost i	blqaly,	link(po	wer 1.5) famil	y(poisson)
Variance	e function: V	'(u) = u			[Poisson]	
Link fun	ction: g(u)	= u^(1.5)			[Power]	
Log like	lihood = -335	5.199289			AIC 1.360797 BIC -3023.25	5
nqaly	Coef	Std Err	z	P> z	95%	6 CI
Temp	059525	.053554	-1.11	0.266	164488	.045439
dissev	.156198	.244879	0.64	0.524	323756	.636152
blcost	.000036	.000037	0.97	0.331	000037	.000109
blqaly	185844	.180880	-1.03	0.304	540361	.168674
_cons	.322960	.180606	1.78	0.074	031021	.676941
eeict1 dta						

replace temp= predict pglm1	=0 151pg0				
replace temp=	=1				
predict pglm1	151pq1				
replace pglm1	151pq0=	1-pglm151p	0p		
replace pglm1	151pq1=	1-pglm151p	q1		
sum pglmpgq*					
sum pglmpgq* Variable	Obs	Mean	Std. Dev.	Min	Max
sum pglmpgq* Variable +- pglm151pq0	0bs 500	Mean .5628606	Std. Dev.	Min .4317995	Max

Lo	ogit Link,	Binomial	1 Family
ativoly	wo oon tr	onoform the	OALV distr

•	Alternatively, we can transform the QALY distribution so that it ranges between 0 and 1 and use a logit link and binomial 1 family (equivalent to beta regression)
	local max=1
	local min=0 (for EQ-5D, local min=-0.594)
	<pre>local a=-`min'/(`max'-`min')</pre>
	<pre>local b=1/(`max'-`min')</pre>
	gen bqaly=`a'+(`b'*qaly)
	sum galy bgaly

Variable	Obs	Mean	Std. Dev.	Min	Max
qaly	500	.5941653	.2121148	.05679	.96822
bqaly	500	.5941653	.2121148	.05679	.96822

	G	LM with	Bino	mial 1	/Logit	
glm bqa	ly temp dis	sev blcost	blqaly	, link	(logit) famil;	y(binomial 1)
Variance Link fun	e function: V(ction: g(u)=u*(1-u) u)=ln(u/1-u)			[Bernoulli] [Logit]	
Log like	lihood = -238	.9699913			BIC -2050.85	Э
nqaly	Coef	Std Err	z	P> z	95%	CI
temp	.2626131	.1834617	1.43	0.152	0969653	.6221914
dissev	6328458	.832264	-0.76	0.447	-2.264053	.9983617
blcost	0001494	.0001208	-1.24	0.216	0003862	.0000875
blqaly	.8675488	.6338201	1.37	0.171	3747157	2.109813
_cons	.0373004	.6190775	0.06	0.952	-1.176069	1.25067
eeict1.dta						

* RECYCLED REDIC	TIONS			
replace temp=0				
predict pglmlbq0				
replace temp=1 predict pglmlbgl				
sum palmlba*				
Variable Obs	Mean	Std. Dev.	Min	Max
pglmlbq0 500	.5628245	.048325	.4159106	.6653128
pglmlbq1 500	.6254634	.0461845	.4807669	.7210496
				11/201

Run Link DIAGNOSTICS, Logit/Binomial 1

ITTED MODEL: Link = Logit ; Family = Binomial	
Results of tests of GLM Identity link	
Pearson Correlation Test:	.9914
Pregibon Link Test:	.5605
Modified Hosmer and Lemeshow:	.9242

eict1.dta