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Policy Relevant Parameter for CEA (I)

• Policy relevant parameter:  differences in the arithmetic, 
or sample, mean

– In welfare economics, a project is cost-beneficial if the 
winners from any policy gain enough to be able to 
compensate the losers and still be better off 
themselves

• Thus, we need a parameter that allows us to 
determine how much the losers lose, or cost, and 
how much the winners win, or benefit

– From a budgetary perspective, decision makers can 
use the arithmetic mean to determine how much they 
will spend on a program
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• Other summary statistics such as median cost may be 
useful in describing the data, but do not provide 
information about the difference in cost that will be 
incurred or the cost saved by treating patients with one 
therapy versus another

– They thus are not associated with social efficiency

• Lack of symmetry of cost distribution does not change 
fact that we are interested in the arithmetic mean

• Evaluating some other difference, be it in medians or 
geometric means, simply because the cost distribution 
satisfies the assumptions of the tests for these statistics, 
may be tempting, but does not answer the question     
we are asking

Policy Relevant Parameter for CEA (II)

Cost Data 101

• Common feature of cost data is right-skewness (i.e., 
long, heavy, right tails)

• Data tend to be skewed because:

– Can not have negative costs

– Most severe cases may require substantially more 
services than less severe cases

– Certain events, which can be very expensive, occur in 
a relatively small number of patients

• A minority of patients are responsible for a high 
proportion of health care costs

Sample Dataset

. clear

. set more off

. use rchapter5

. sum

Variable|  Obs Mean  Std. Dev.      Min       Max
--------+----------------------------------------------

id |  500     250.5  144.4818         1       500
treat |  500        .5  .5005008         0         1
cost |  500    3027.5  1389.921       315     10499
qaly |  500  .5941654  .2121149    .04798    .95119

dissev |  500   .347486  .1124773      .025      .729
--------+---------------------------------------------

race |  500      .506  .5004647         0         1
blcost |  500  1634.859  770.5504  111.0891  4926.931
blqaly |  500  .7857801   .145283  .4895464         1
male |  500      .484  .5002444         0         1

* Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. Chapter 5 in 
“Economic Evaluation in Clinical Trials”, 2007.
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Sample Dataset

. describe

Contains data from D:\henry\HGClass\rchapter5.dta
obs:           500                          
vars:             9                     18 Apr 2008 14:25
size:        16,500 (99.9% of memory free)
----------------------------------------------------------

storage  display   value
variable name   type   format    label    variable label
----------------------------------------------------------
id              int    %9.0g              Patient ID
treat           byte   %9.0g              Treatment group
cost            int    %9.0g              Total cost
qaly            float  %9.0g              QALYs
dissev          float  %9.0g              Disease severity
race            float  %9.0g              Race
blcost          float  %9.0g              Baseline cost
blqaly          float  %9.0g              Baseline QALY
male            float  %9.0g
----------------------------------------------------------
Sorted by:  id
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Typical Distributions Of Cost Data (I)

Inspect the Cost Data (I)

. summary cost if treat==0,detail

Total cost
----------------------------------------------------------

Percentiles     Smallest
1%         622           315
5%         899           589
10%        1093           622      Obs                 250
25%        1819           640      Sum of Wgt.         250

50%      2825.5                    Mean               3015
Largest      Std. Dev.      1582.802

75%        3752          7361
90%        4952          7540      Variance        2505262
95%        6103          8232      Skewness        1.03501
99%        7540         10483      Kurtosis       4.910192



4

Inspect the Cost Data (II)

. summary cost if treat==1,detail

Total cost
----------------------------------------------------------

Percentiles     Smallest
1%        1093           681
5%        1426           899
10%        1832          1093      Obs                 250
25%        2226          1170      Sum of Wgt.         250

50%      2900.5                    Mean               3040
Largest      Std. Dev.      1168.737

75%        3604          6296
90%        4404          6470      Variance        1365946
95%        5085          6520      Skewness       1.525386
99%        6470         10499      Kurtosis       9.234913

Typical Distribution Of Cost Data (II)

• Heavy tails vs. "outliers“

– Distributions with long, heavy, right tails will have 
means that differ from the median

• Median is a biased estimate of the sample mean

Problem Not Related Solely to “Outliers”

• Distribution when 5 observations with cost > 7200 are 
eliminated
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Full Sample Trimmed (3*SD) *

Group 0 Group 1 Group 0 Group 1

Mean 3015 3040 2927 3010

Median 2826 2901 2816 2885

* p = 0.003 and 0.0001 for nonnormality of groups 0 and 
1, respectively

Mean, SD When 5 Observations with Cost > 7200 
are Eliminated

Univariate And Multivariable Analyses Of 
Economic Outcomes

• Analysis plans for economic assessments should 
routinely include univariate and multivariable methods for 
analyzing the trial data

• Univariate analyses are used for the predictors of 
economic outcomes

– Demographic characteristics, clinical history, length of 
stay, and other resource use before entry of study 
participants into the trial

• Univariate and multivariable analyses should be used for 
the economic outcome data

– Total costs, hospital days, quality-adjusted life     
years

Univariate Analysis of Costs
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Univariate Analysis Of Costs

• Report:

– Arithmetic means and their difference

• Economic analysis is based on differences in 
arithmetic mean costs (because n x mean = total), 
not median costs; thus means are the statistic of 
interest

– Measures of variability and precision, such as:

• Standard deviation

• Quantiles such as 5%, 10%, 50%,... 

– An indication of whether or not the difference in 
arithmetic means 

• Occurred by chance

• Is economically meaningful

Univariate Analysis: Parametric Tests Of Raw 
Means

• Usual starting point: T-tests and one way ANOVA

– Used to test for differences in arithmetic means in 
total costs, QALYS, etc.

– Makes assumption that the costs are normally 
distributed

– Normality assumption is routinely violated for cost 
data, but t-tests have been shown to be robust to 
violations of this assumption when:

• Samples moderately large

• Samples are of similar size and skewness

• Skewness is not too extreme

Steps in Performing a T-test

• Evaluate whether or not the outcome is normally distributed
– Stata command: sktest (joint test of skewness and 

kurtosis)
sktest cost if treat==0
sktest cost if treat==1

• Evaluate whether or not the standard deviations of costs for 
the treatment groups are similar
– Stata command: sdtest

sdtest cost, by(treat)
• Perform the t-test and interpret it in relationship to the prior 

two tests
– Stata command: ttest

ttest cost, by(treat) unequal
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Results of Tests of Normality and Equivalence of 
S.D. of Costs

Test P-value Conclusion

Normality

sktest, group 0 0.0 Failed

sktest, group 1 0.0 Failed

Equality of standard deviations

sdtest 0.0 Failed

T-test for Cost

. ttest cost,by(treat) unequal

Two-sample t test with unequal variances
----------------------------------------------------------------

Group | Obs    Mean  Std. Err  Std. Dev  [95% Conf. Interval]
---------+------------------------------------------------------

0 | 250    3015  100.1052  1582.802  2817.839    3212.161
1 | 250    3040  73.91742  1168.737  2894.417    3185.583

---------+------------------------------------------------------
combined | 500  3027.5  62.15917  1389.921  2905.374    3149.626
---------+------------------------------------------------------

diff |         -25  124.4381           -269.5399    219.5399
----------------------------------------------------------------

diff = mean(0) - mean(1)                        t =  -0.2009
Ho: diff = 0       Satterthwaite's degrees of freedom =  458.304

Ha: diff < 0          Ha: diff != 0          Ha: diff > 0
Pr(T < t) = 0.4204  Pr(|T| > |t|) = 0.8409   Pr(T > t) = 0.5796

Responses To Violation Of Normality Assumption

• Adopt nonparametric tests of other characteristics of the 
distribution that are not as affected by the nonnormality of 
the distribution (“biostatistical” approach)

• Transform the data so they approximate a normal 
distribution (“classic econometric” approach)

• Adopt tests of arithmetic means that avoid parametric 
assumptions (most recent development)

• OBSERVATION: If we abandon statistical testing of the 
arithmetic mean because distributional assumptions of 
the t-test are violated, does not imply that we are not 
interested in differences in the arithmetic mean
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Response 1: Non-parametric Tests of Other 
Characteristics of the Distribution

• Rationale: Can analyze the characteristics that are not 
as affected by the nonnormality of the distribution

– Wilcoxon rank-sum test

– Kolmogorov-Smirnov test

Potential Problem with Testing Other 
Characteristics of the Distribution

• Tests indicate that some measure of the cost distribution 
differs between the treatment groups, such as its shape 
or location, but not necessarily that the arithmetic means 
differ

• The resulting p-values need not be applicable to the 
arithmetic mean

• While we might decide to compare cost by use of tests 
like the Mann-Whitney U test, the numerator and 
denominator of the cost-effectiveness ratio should never 
be represented as a difference in median cost or effect

Response 2: Transform the Data

• Transform costs so they approximate a normal 
distribution

– Common transformations

• Log (arbitrary additional transformations required if 
any observation equals 0)

• Square root

– Estimate and draw inferences about differences in 
transformed costs
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Estimates and Inferences Not Necessarily 
Applicable to Arithmetic Mean

• Goal is to use these estimates and inferences to 
estimate and draw inferences about differences in 
untransformed costs

– Estimation: Simple exponentiation of mean of log 
costs results in geometric mean, which is a biased 
estimate of the arithmetic mean

• Need to apply smearing factor 

– Inference: On the retransformed scale, inferences 
about the log of costs translate into inferences about 
differences in the geometric mean rather than the 
arithmetic mean

Primer on the Log Transformation of Cost

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

N

N
i

i = 1

Y

Raw Cost Group 2 Group 3

Obs:  1 15 35

2 45 45

3 75 55

Arithmetic mean 45 45

Log of arithmetic mean 3.806662 3.806662

Geometric mean 36.993 44.247

Log Cost

Obs:  1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arithmetic mean of logs 3.610734 3.789781

Exp(mean ln) 36.993 44.247

Primer On The Log Transformation Of Costs

• Observation: Simple exponentiation of the mean of the 
logs yields the geometric mean of costs, which in the 
presence of variability in costs (variance, skewness, 
kurtosis) is a biased estimate of the arithmetic mean

– All else equal, the greater the variance, the 
skewness, or kurtosis, the greater the downward bias 
of the exponentiated mean of the logs

– e.g., (25 * 30 * 35)0.333 = 29.7196

(10 * 30 * 50)0.333 = 24.6621

(5 * 30 * 55)0.333 = 20.2062

(1 * 30 * 59)0.333 = 12.0664

• “Smearing” factor attempts to eliminate bias from   
simple exponentiation of the mean of the logs
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Retransformation Of The Log Of Cost (I)

• Duan's common smearing factor:

where in univariate analysis,       = the group mean

• Common smearing factor equals the mean of the 
exponentiation of the log residuals

• Most appropriate when treatment group variances 
are equivalent

i i

N
(Z  - Z )

i=1

1
 = e

N
  ˆ

iẐ

i îz - z i iˆ(z  - z )e

Retransformation Of The Log Of Cost (II)

Φ

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734 -- --

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  -- --

Smear 1.116732 

-0.9026834 0.4054801

• Retransformation formula

• Retransformation

Common Smearing Retransformation (I)

2

3

(Z )
2

(Z )
3

E(Y ) =     e

E(Y ) =     e





Group Ф e(ln) Predicted cost

2 1.116732 36.993 41.3

3 1.116732 44.247 49.4
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Common Smearing Retransformation (II)

• Why are the retransformed subgroup-specific means --
41.3 and 49.4 -- so different from the untransformed 
subgroup means of 45?

• Because the standard deviations of the subgroups' logs 
are substantially different

SD2 = 0.8224; SD3 = 0.2265

• The larger standard deviation for group 2 implies that 
compared with the arithmetic mean, its geometric mean 
has greater downward bias than does the geometric 
mean for group 3

• Thus, multiplication of the 2 groups’ geometric means by 
a common smearing factor cannot give accurate 
estimates for both groups’ arithmetic means

Log Transformations and Normal Assumptions

• Log transformations and normal assumptions:

– If met, t-test of the log may be more efficient than t-
test of cost

– If not met there are no efficiency gains

– In either case, retransformation translates differences 
in variance, skewness, and kurtosis into       
differences in means

Subgroup-specific Smearing Factors (I)

• Manning has shown that in the face of 
heteroscedasticity – i.e., differences in variance -- use 
of a common smearing factor in the retransformation 
of the predicted log of costs yields biased estimates of 
predicted costs

• We obtain unbiased estimates by use of subgroup-
specific smearing factors

• Manning's subgroup-specific smearing factor:

j

ij j

N
(Z  - Z )

j
i=1j

1
 = e

N
 

ˆ
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Subgroup-specific Smearing Factors (II)

i i
ˆz  - z i iˆ(z  - z )e

Φ2

Φ3

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734  --     1.21644

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  --     1.0170245

-0.9026834 0.4054801

Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2 2

(Z )
3 3

E(Y ) =  e

E(Y ) =  e





Group Фi e(ln) Predicted cost

2 1.21644 36.993 45.00

3 1.0170245 44.247 45.00

Subgroup-specific Smearing Retransformation (II)

• All else equal, in the face of differences in variance (or 
skewness or kurtosis), use of subgroup-specific 
smearing factors yield unbiased estimates of subgroup 
means

• Use of separate smearing factors eliminates efficiency 
gains from log transformation, because we cannot 
assume that p-value derived for the log of cost applies to 
the arithmetic mean of cost
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Potential Problems with Testing Transformation of 
the Data (I)

P- value for normality = 0.002 and p=0.01 for the  two groups

• Log transformation doesn’t always result in normality

Potential Problems with Testing Transformation of 
the Data (II)

• When we use a t-test to evaluate log cost, the resulting 
p-value has direct applicability to the difference in the log 
of cost

• It generally also applies to the difference in the 
geometric mean of cost (i.e., we see similar p-values for 
the difference in the log and the difference in the 
geometric mean)

• The p-value for the log may or may not be directly 
applicable to the difference in arithmetic mean of 
untransformed cost

Potential Problems with Testing Transformation of 
the Data (III)

• Whether the p-value for the log is applicable to the 
difference in the arithmetic mean of untransformed cost 
depends on whether the two distributions of the log are 
normal and whether they have equal variance and thus 
standard deviation

– If log cost is normally distributed and if the variances 
are equal, inferences about the difference in log cost 
are generally applicable to the difference in arithmetic 
mean cost

– If log cost is normally distributed and if the variances 
are unequal, inferences about the difference in log 
cost generally will not be applicable to the     
difference in arithmetic mean cost
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Potential Problems with Testing Transformation of 
the Data (IV)

• For economic analysis, the outcome of interest is the 
difference in untransformed costs (e.g., “Congress does 
not appropriate log dollars. First Bank will not cash a 
check for log dollars”)

• Thus, the results on the transformed scale must be 
retransformed to the original scale

• “There is a very real danger that the log scale results 
may provide a very misleading, incomplete, and biased 
estimate...on the untransformed scale, which is usually 
the scale of ultimate interest” (Manning, 1998)

• “This issue of retransformation...is not unique to the   
case of a logged dependent variable. Any power 
transformation of y will raise this issue”

Response 3: Tests of Means that Avoid Parametric 
Assumptions

• Bootstrap estimates the distribution of the observed 
difference in arithmetic mean costs

• Yields a test of how likely it is that 0 is included in this dis-
tribution (by evaluating the probability that the observed 
difference in means is significantly different from 0)
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Bootstrap Simulation

x  ( )x , x , ..., x1 2 n x*1

x*2

x*B

S( )x

S( )x*1

S( )x*2

S( )*Bx

• Random draw with 
replacement from each 
treatment group (thus 
creating multiple bootstrap 
replicates of the sample)

• Calculate the difference in the mean between the two 
treatment groups for each bootstrap replicate

Histogram of Bootstrap Results
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Data Example: Distribution of Costs, Chapter 5
Group 0 Group 1

Arith Mean 3015  3040

Std. Dev. 1582.802 1168.737

Quantiles

     5% 899 1426

   25% 1819 2226

   50% 2825.5 2900.5

   75% 3752 3604

   95% 6103 5085

Skewness 1.03501 1.525386

Kurtosis 4.910192 9.234913

Geom Mean 2600.571 2835.971

Mean ln 7.8634864 7.9501397

SD ln .57602998 .37871479

Obs 250 250
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Univariate Analysis with STATA

• Provide a log file with full set of commands for all types 
of (appropriate & inappropriate) univariate tests in 
STATA

• Provide documentation for bootstrap when we perform 
multivariable analysis of cost below

• In the next slide, we summarize the results of the 
univariate tests using STATA

Results from Univariate Analysis of cost

Plac  Act  Diff  P-val   -- 95% CI --

Mean cost:      3015  3040   25  0.8409  -220 to 270

Median cost:    2826  2901   75  0.3722

Kolm-Smirn:                    0.0017

Log cost

Common SD:    2901  3164  263  0.0475

Heterosk:                   0.0000

Bootstrap

Nonparamet:                   0.8050  -210 to 265

Parametric:                   0.8371  -214 to 264

Why Do Different Statistical Tests Lead To 
Different Inferences?

• The tests are evaluating differences in different statistics 

– T-test of untransformed costs indicates we cannot 
infer that the arithmetic means are different

– Wilcoxon rank-sum test also leads to the same 
inference, but its p-value relates more to the 
probability that the medians differ

– Kolmogorov-Smirnov test indicates we can infer   that 
the distributions are different

– T-test of log costs indicates we can infer that the 
mean of the logs are different, and thus the  
geometric means of cost are different

– Bootstrap leads to same (lack of) inference as t-test 
and does not make the normality assumption
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Univariate Analysis: Summary/Conclusion (I)

• Cost-effectiveness ratios (∆C /∆E) and NMB ([WTP ∆E] -
∆C) require an estimate of ∆C and ∆E, the differences in 
arithmetic means

• If arithmetic means are the most meaningful summary 
statistic of costs, we should test for significant 
differences in arithmetic mean costs

– Parametric test of means

– Non-parametric test of means (e.g., bootstrap 
methods)

Univariate Analysis: Summary/Conclusion (II)

• Because of distributional problems related to evaluating 
the arithmetic mean, there has been a growing use of 
nonparametric tests such as Wilcoxon and KS tests

– Problem: Their use divorces hypothesis testing from 
estimation

• i.e., we want to 1) estimate the magnitude of the 
difference in arithmetic means and 2) test whether 
that difference was observed by chance

• Use of tests of medians or distributions to address 
the second task does not help with the first task

• Tests of transformed variables such as the log or   
square root pose similar problems

Multivariate Analysis of Costs
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Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting 
use of multivariable analysis may have added benefits:

– Improves the power for tests of differences between 
groups (by explaining variation due to other causes)

– Facilitates subgroup analyses for cost-effectiveness 
(e.g., more/less severe; different countries/centers)

– Variations in economic conditions and practice 
pattern differences by provider, center, or country 
may have a large influence on costs and the 
randomization may not account for all differences

– Added advantage: Helps explain what is observed 
(e.g., coefficients for other variables should make 
sense economically)

• If treatment is not randomly assigned, multivariable 
analysis is necessary to adjust for observable 
imbalances between treatment groups, but it may NOT 
be sufficient

Multivariable Analysis Of Economic Outcomes (II)

• Common Techniques

– Ordinary least squares regression predicting costs 
after randomization (OLS)

– Ordinary least squares regression predicting the log 
transformation of costs after randomization (log OLS)

– Generalized Linear Models (GLM)

• Other Techniques:

– Generalized Gamma regression (Manning et al. 
Journal of Health Economics 2005)

– Extended estimating equations (Basu and Rathouz, 
Biostatistics 2005)

Multivariable Techniques Used for the 
Analysis of Cost 
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Multivariable Analysis

• Different multivariable models make different 
assumptions

– When assumptions are met, coefficient estimates will 
have many desirable properties

– With cost analysis, assumptions are often violated, 
which may produce misleading or problematic 
coefficient estimates

• Bias (consistency)

• Efficiency (precision)

Multivariate Analysis with STATA: Outline 

• Estimate of adjusted mean difference in costs

– Start with everyone's "old" favorite:  OLS

– Check the fit of the gauss family used in OLS

• Revise family if necessary

– Start with everyone's "new" favorite: GLM gamma/log

– Check the fit of the gamma family

• Revise family if necessary

– Tune the link

• P-values and confidence intervals for the adjusted mean 
difference in costs using bootstrapping

– Parametric tests

– Non-parametric tests

• Advantages

– Easy

– No retransformation problem (faced with log OLS)

– Marginal/Incremental effects easy to calculate

• Disadvantages

– Not robust:

• In small to medium sized data set

• In large datasets with extreme observations

– Can produce predictions with negative costs

Y = α + β1X1 + β2X2 + …. + βkXk + Є

Ordinary Least Squares (OLS)
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regress cost treat dissev blcost blqaly race

F(6,493)       34.09

Source SS Df MS Prob>F        0.0000

Model 2473e+5 5 416e+5 R-squared   0.2565

Resid 7167e+5 494 145e+4 Adj R-sq      0.2490

Total 9640e+5 499 193e+4 Root MSE    1204.5

Cost Coef Std Err T P>|t| [95% Conf Int]

treat 21.993 107.77 0.20 0.838 -189.74   233.74

dissev 4033.41 516.34 7.81 0.000 3018.92   5047.91

blcost .3945 .0758 5.20 0.000 0.2455   0.5435

blqaly -773.30 371.98 -2.08 0.038 -1504.16   -42.45

race -768.02 118.75 -6.47 0.000 -1001.35   -534.69

_cons 1966.32 366.11 5.37 0.000 1247.00   2685.64

eeict1.dta

• Coefficient from OLS (21.99) equals predicted cost 
difference

• Alternatively, can use mean values for the other 
explanatory variables and calculate the difference in the 
predictions for treat = 0 and one for treat = 1:

– Control:  1966.32+(.347*4033.41)+(1634.86*.3945)-
((.786*773.30) + (.506*768.02)) = 3014.43

– Treatment:  1966.32+(.347*4033.41)+(1634.86*.3945) 
- ((.786*773.30)+(.506*768.02))+21.99 = 3036.42

3036.42 - 3014.43 = 21.99

Predicted Cost

• Don’t predict cost for each individual and take means:
predict olscost
tab treat, sum(olscost)

3040 - 3015 = 25 ≠ 21.99

• This method re-introduces the covariate imbalance that 
OLS was meant to eliminate

Don’t Take Means of Individual Predictions

Treatment

group

Summary of Fitted values

Mean Std. Dev Freq

0 3015 746.32806 250

1 3040 660.17754 250

Total 3027.5 703.97565 500
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• Alternative method of using the mean values for the 
explanatory variables is to use the method of recycled 
predictions

– i.e., alternative method for obtaining 

• To recycle predictions, code everyone as if they were in 
treatment group 0 and make a prediction; then code 
everyone as if they were in treatment group 1 and make 
a second prediction

gen temp=treat

regress cost temp dissev blcost blqaly race

replace temp=0

predict olscost0

replace temp=1

predict olscost1

Method of Recycled Predictions

i i X

sum olscost0 olscost1

Variable | Obs      Mean Std. Dev.     Min      Max

---------+-----------------------------------------

olscost0 | 500  3016.503  703.866 1184.116 5527.065

olscost1 | 500  3038.497  703.866 1206.109 5549.059

3038.497 - 3016.503 = 21.99 *

• Recycled predictions are simply another way to use the 
sample means for the covariates but at the same time 
make patient-level predictions

*  Differences between this method and multiplication of sample-wide 
means times the coefficients due to rounding

Results of Recycled Predictions

Generalized Linear Models (GLM)

• OLS can be run as a generalized linear model

• Rerunning as a GLM facilitates comparison of model fit 
to the fit of other model specifications

• GLM model has the advantages of the log model, but

– Doesn’t require normality or homoscedasticity,

– Evaluates a transformation of the difference in 
arithmetic mean cost, not a transformation of 
individual patient level costs

– Doesn’t raise problems related to retransformation 
from the scale of estimation to the raw scale

• To run a GLM, must identify a "link function" and a 
"family“ (based on the data)
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The Link Function

• Link function directly characterizes how the linear 
combination of the predictors is related to the prediction on 
the original scale

• Examples of links include:

– Identity Link:

– Log link:

• Availability of alternative links relaxes linearity assumption

– E(y/x) = ΣβiXi (OLS) 

– E(ln(y)/x)=ΣβiXi (log OLS)

Which link is used by OLS?

ˆ
j i iji

Y  =  X
 ˆ i iji

 X

jY  = exp


Family

• Specifies distribution that reflects mean-variance 
relationship

• Currently, families for continuous data available in Stata 
include:

– Gaussian (constant variance)

– Poisson (variance proportional to mean)

– Gamma (variance proportional to square of mean)

– Inverse gaussian (variance proportional to cube of 
mean)

• Availability of the poisson, gamma, and inverse Gausian 
families relaxes assumption of constant variance

Which family is used by OLS?

Rerun OLS as GLM With Identity Link and Gauss 
Family

replace temp=treat

glm cost temp dissev blc blq race,link(identity) 
family(gauss)

General syntax:  
glm [depvar] [indepvars] [if xxx],link(xxx) family(xxx)

rchapter5.dta
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glm cost temp dissev blcost blqaly race, 
link(identity) family(gauss)

Variance function:  V(u) = 1
Link function:         g(u) = u

[Gaussian]

[Identity]

Log likelihood = -4253
AIC 17.037
BIC 7.17e+08

cost Coef Std Err z P>|z| 95% CI

temp 21.99324 107.7662 0.20 0.838 -189.2247  233.2112

dissev 4033.414 516.3404 7.81 0.000 3021.406  5045.423

blcost .3944632 .0758403 5.20 0.000 .2458189  .5431076

blqaly -773.301 371.9785 -2.08 0.038 -1502366  -44.23705

race -768.020 118.7549 -6.47 0.000 -1000.775  -535.2645

_cons 1966.319 366.1061 5.37 0.000 1248.765  2683.874

eeict1.dta

• As with OLS, coefficient from GLM, identify link, gauss 
family (21.99) equals predicted cost difference

• As with OLS, can use mean values for the other 
explanatory variables and calculate one difference in the 
predictions for treat = 0 and another for treat = 1

• As with OLS, can use recycled predictions

Predicted Cost

gen temp=treat
glm cost temp dissev blcost blqaly race, 

link(identity) family(gauss)
replace temp=0
predict polsc0
replace temp=1
predict polsc1

sum polsc*

Variable | Obs       Mean Std. Dev.          Min            Max
-------------+----------------------------------------------------------------------

polsc0 | 500   3016.503   703.866   1184.116   5527.065
polsc1 | 500   3038.497   703.866   1206.109   5549.059

DIFFERENCE:  22

Identity/Gauss Recycled Predictions
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Are We Using the Correct Family?

• The modified Parks test is a “constructive” test that 
recommends a family given a particular link function

• This test is included in the program we’ve titled glmdiag 
which is loaded by the following command:

do glmdiagnostic

• To perform the test, we first run the glm model and then 
run glmdiag:

replace temp=treat

glm cost temp dissev blcost blqaly race, 
link(identity) family(gauss)

glmdiag

GLM Diagnostics, Identity/Gaussian

FITTED MODEL:   Link = Identity ; Family = Gaussian

Results, Modified Park Test (for Family)

Coefficient:     1.391784

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson: 1.4021 0.2364

Gamma: 3.3790 0.0660

Gaussian NLLS: 17.6936 0.0000

Inverse Gaussian or Wald 23.6244 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 1.0000

Pregibon Link Test: 0.8913

Modified Hosmer and Lemeshow: 0.3487

eeict1.dta

. return list

scalars:
r(ln_coef) =  1.391784
r(p_family) =  .2364
r(p_gaus) =  .000026
r(p_pois) =  .2363797
r(p_gam) =  .0660326

r(p_igaus) =  1.20000000000e-06
r(N) =  500

r(p_pearson) =  1
r(p_pregibon) =  .8913000000000001

r(p_h_m) =  .3487
r(ll) =  -4253.36394877669
r(aic) =  17.03745579510676
r(bic) =  716710494.4875774

r(deviance) =  716713564.503978

macros:
r(family) : "poisson"

GLMDIAG Saved Results
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• PROBLEM WITH P-VALUES?

Variance function:  V(u) = u
Link function:         g(u) = u

[Poisson]

[Identity]

Log likelihood = -113576
AIC 454.33
BIC 219210

cost Coef Std Err z P>|z| 95% CI

temp 113.1149 4.798526 23.57 0.000 103.71   122.52

dissev 4008.434 22.67209 176.80 0.000 3964.00   4052.87

blcost .3861272 .0036013 107.22 0.000 .3791   .3932

blqaly -765.3726 16.58928 -46.14 0.000 -797.89   -732.86

race -746.5739 5.324134 140.22 0.000 -757.01   -736.14

_cons 1925.985 16.49097 116.79 0.000 1893.664   1958.307

glm cost temp dissev blcost blqaly 
race, link(identity) family(poisson)

eeict1.dta

GLM Diagnostics, Identity/Poisson

FITTED MODEL:   Link = Identity ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     1.436638

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson: 1.7001 0.1923

Gamma: 2.8301 0.0925

Gaussian NLLS: 18.4046 0.0000

Inverse Gaussian or Wald 21.7947 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 0.8818

Pregibon Link Test: 0.7021

Modified Hosmer and Lemeshow: 0.5134

rchapter5.dta

• As with OLS, coefficient from GLM, identify link, poisson 
family (113.11) equals predicted cost difference

• As with OLS, can use mean values for the other 
explanatory variables and calculate one difference in the 
predictions for treat = 0 and another for treat = 1

• As with OLS, can use recycled predictions

• Unlike OLS, standard errors for poisson family are 
wrong (we’ll need to bootstrap the model if we want 
reasonable standard errors)

Predicted Cost
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glm cost temp dissev blcost blqaly race,link(identity) 
family(poisson)

replace temp=0

predict ppoisc0

replace temp=1

predict ppoisc1

sum ppoisc*

Variable | Obs  Mean Std. Dev.  Min Max

-------------+-----------------------------------------------------------------

ppoisc0 | 500   2970.943   691.9996  1162.989  5450.039

ppoisc1 | 500   3084.057   691.9996  1276.104  5563.153

DIFFERENCE:  113

Identity/Poisson Recycled Predictions

Change in Family Leads to Fairly Big Differences 
in Point Estimate (Not Sure About SE)

Cost Coef. Std Err z P>|z| [95% Conf Interval]

Gaussian / Identity

temp 21.99 107.77 0.20 0.838 -189.2247   233.2112

Poisson / Identity

temp 113.11 4.80 23.57 0.000 103.71   122.5198

• Change in family not “supposed” to affect coefficient 
dramatically (consistency)

• Change in coefficient may be due to:
– Lack of significance of coefficients
– Incorrect specification of link or covariates

Suppose We Started with GLM Log/Gamma

• Log link more commonly used in literature than identity 
link

• When we adopt the log link, we are assuming:

ln(E(y/x))=Xβ

• GLM with a log link differs from log OLS in part because 
in log OLS, we are assuming:

E(ln(y)/x)=Xβ

• ln(E(y/x) ≠ E(ln(y)/x)

i.e. log of the mean ≠ mean of the log costs
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ln(E(y/x) ≠ E(ln(y)/x)

Variable Group 2 Group 3

Observations

1 15 35

2 45 45

3 75 55

Arithmetic mean 45 45

Log, arith mean cost 3.806662 3.806662 *

Natural log

1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arith mean, log cost 3.610734 3.789781 †

* Difference = 0;  † Difference = 0.179047

Comparison of Results of GLM Gamma/Log and 
log OLS Regression

Variable Coefficient SE  z/T p value

GLM, gamma family, log link

Group 2 0.000000 0.405730 0.00 1.000

Constant 3.806662 0.286894 13.27 0.000

Log OLS

Group 2 0.179048 0.492494 0.36 0.74

Constant 3.610734 0.348246 10.32 0.000

Variance function:  V(u) = u^2
Link function:         g(u) = ln(u)

[Gamma]

[Log]

Log likelihood = -4494.155729
AIC 18.00062
BIC -2988.518

cost Coef Std Err z P>|z| 95% CI

temp .0446782 .0356359 1.25 0.210 -.0251669   .1145232

dissev 1.409376 .1739606 8.10 0.000 1.06842   1.750333

blcost .000122 .0000257 4.78 0.000 .0000724   .0017300

blqaly -.2579657 .1223431 -2.11 0.035 -.4977537   -.0183796

race -.2613111 .0395492 -6.61 0.000 -.3388262   -.1837961

_cons 7.610573 .1220851 62.34 0.000 7.371291   7.849856

glm cost temp dissev blcost blqaly race, 
link(log) family(gamma)

eeict1.dta
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• GLM avoids the problem that simple exponentiation of 
the results of log OLS yields biased estimates of 
predicted costs

• For the identity link, as for OLS, the coefficient 
represents the incremental cost

• For other (nonlinear) links such as the log, it does not 
avoid the other complexity of nonlinear retransformations 
(also seen in log OLS models):

– On the transformed scale, the effect of the treatment 
group is estimated holding all else equal; however, 
retransformation (to estimate costs) reintroduces    
the covariate imbalances

Retransformation

• Coefficient from GLM, log link, gamma family (.0447) 
does not equal predicted cost difference

• Cannot use mean values for the other explanatory 
variables and calculate one difference in the predictions 
for treat = 0 and another for treat = 1

– The mean of nonlinear retransformations does not 
equal the nonlinear retransformation of the mean

• Can use recycled predictions to create an identical 
covariate structure for the two groups

Predicted Cost

replace temp=0
predict pglmglc0
replace temp=1
predict pglmglc1

sum pglmglc*

Variable| Obs     Mean Std. Dev.     Min        Max
---------+------------------------------------------
pglmglc0 | 500 2964.034  733.7266 1542.916  6767.186
pglmglc1 | 500 3099.465  767.2515 1613.414  7076.388

DIFFERENCE:  135

Log/Gamma Recycled Predictions
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Recycled vs Treatment-Specific Predictions

. replace temp=treat

. quietly glm cost temp dissev blcost blqaly race,
link(log) family(gamma)

. predict pcost
(option mu assumed; predicted mean cost)

. tab treat,sum(pcost)

Treatment |    Summary of predicted mean cost
group |      Mean   Std. Dev.     Freq.

----------+---------------------------------
0 | 2973.8331   789.66446       250
1 | 3089.2184   705.44167       250

----------+---------------------------------
Total | 3031.5257   750.21371       500

DIFFERENCE:  115

Recycled vs Treatment-Specific Predictions (II)

• Difference between mean of the recycled predictions 
(135) and mean of treatment group-specific predictions 
(115) due to whether or not covariates are balanced

• Given the log link is a multiplicative model, If we want to 
hold all-else equal during both estimation AND 
prediction, must use method of recycled predictions

FITTED MODEL:   Link = Log ; Family = Gamma

Results, Modified Park Test (for Family)

Coefficient:     1.5912

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Gamma: 1.9560 0.1619

Poisson: 4.0897 0.0431

Inverse Gaussian or Wald 23.2272 0.0000

Gaussian NLLS: 29.6281 0.0000

Results of tests of GLM Log link

Pearson Correlation Test: .2460

Pregibon Link Test: .1273

Modified Hosmer and Lemeshow: .6199

Is Gamma the Correct Family for Log Link?

eeict1.dta
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What’s the Appropriate Link?

• So far we have evaluated the identity link (with an 
“optimized” poisson family) and the log link (with an 
“optimized” gamma family)

• But what link should we use?

Selecting a Link Function

• There is no single test that identifies the appropriate link

• Instead can employ multiple tests of fit

– Pregibon link test checks linearity of response on 
scale of estimation

– Modified Hosmer and Lemeshow test checks for 
systematic bias in fit on raw scale

– Pearson’s correlation test checks for systematic bias 
in fit on raw scale

• Ideally, all 3 tests – which are also reported by glmdiag –
will yield nonsignificant p-values

Rerun Identity/Poisson and Assess Fit Statistics

replace temp=treat

glm cost temp dissev blcost blqaly race, 
link(identity) family(poisson)

glmdiag

rchapter5.dta
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GLM Diagnostics, Identity/Poisson

FITTED MODEL:   Link = Identity ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     1.436638

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson: 1.7001 0.1923

Gamma: 2.8301 0.0925

Gaussian NLLS: 18.4046 0.0000

Inverse Gaussian or Wald 21.7947 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 0.8818

Pregibon Link Test: 0.7021

Modified Hosmer and Lemeshow: 0.5134

rchapter5.dta

glm cost temp dissev bl* race, link(log) 
family(gamma)

glmdiag

Rerun Log/Gamma and Assess Fit Statistics

FITTED MODEL:   Link = Log ; Family = Gamma

Results, Modified Park Test (for Family)

Coefficient:     1.5912

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Gamma: 1.9560 0.1619

Poisson: 4.0897 0.0431

Inverse Gaussian or Wald 23.2272 0.0000

Gaussian NLLS: 29.6281 0.0000

Results of tests of GLM Log link

Pearson Correlation Test: .2460

Pregibon Link Test: .1273

Modified Hosmer and Lemeshow: .6199

Run GLM DIAGNOSTICS, Gamma/Log

rchapter5.dta
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Goodness of Fit Statistics

Test Ident/Pois Log/Gam

Pearson Correlation Test: 0.8818 .2460

Pregibon Link Test: 0.7021 .1273

Modified Hosmer and Lemeshow 0.5134 .6199

rchapter5.dta

• Neither link dominates the other (less significant fit 
statistics for all 3 tests) and we haven’t fully worked out 
how to trade-off among the tests, but identity/poisson 
model appears better than log/gamma model

• But can we improve the link?

• Stata’s power link provides a flexible link function

• It allows generation of a wide variety of named and 
unnamed links, e.g.,

– power 2:       = (BiXi)0.5

– power 1 = Identity link;      = BiXi

– power .5 = Square root link;      = (BiXi)2

– power .25:       = (BiXi)4

– power 0 = log link;      = exp(BiXi)

– power -1 = reciprocal link;      = (BiXi)-1

– power -2 = inverse quadratic;      = (BiXi)-0.5

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

Can We Improve the Link?

ˆ
iu

Can We Improve the Link? (2)

• Iteratively evaluate power links (in 0.1 intervals) between 
-2 and 2

– Use the modified Park test to select a family

– Rerun the GLM with the power and preferred link

– Evaluate the fit statistics

– Don’t show you the results here, but we then fine tune 
the power link in 0.01 intervals within candidate 
regions of the power link 

Power 0.65 Link / Poisson Family
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replace temp=treat

glm cost temp dissev blcost blqaly race, 
link(power .65) family(poisson)

Power 0.65 Link / Poisson Family

eeict1.dta

Variance function:  V(u) = u
Link function:    g(u) = u^(.65)

[Poisson]
[Power]

Log likelihood = -113515.3
AIC 454.0853
BIC 219088.2

Cost Coef Std Err z P>|z| 95% CI

temp 3.493932 .1927675 18.13 0.000 3.116115   3.87175

dissev 161.4855 .9285280 173.92 0.000 159.6656   163.3053

blcost .0150344 .0001392 107.97 0.000 .0147615   .0153073

blqaly -30.51369 .6645974 -45.91 0.000 -31.81628   -29.21111

race -30.27 .2133011 -141.91 0.000 -30.68807   -29.85194

_cons 138.8326 .6584566 210.85 0.000 137.542   140.1231

glm cost temp dissev blcost blqaly race,
link(power .65) family(poisson)

eeict1.dta

FITTED MODEL:   Link = Power .65 ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     1.495248

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson: 2.3212 0.1276

Gamma: 2.4111 0.1205

Gaussian NLLS: 21.1587 0.0000

Inverse Gaussian or Wald: 21.4285 0.0000

Results of tests of GLM Log link

Pearson Correlation Test: .9027

Pregibon Link Test: .7469

Modified Hosmer and Lemeshow: .5870

Run GLM DIAGNOSTICS, .65/Poisson

rchapter5.dta
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replace temp=0
predict pglmppc0
replace temp=1
predict pglmppc1

sum pglmppc*

Variable |  Obs     Mean  Std. Dev.       Min       Max
----------+---------------------------------------------
pglmppc0  |  500  2983.316  704.3185  1338.796  5804.318
pglmppc1  |  500  3071.642  711.5133  1406.172  5916.306

DIFFERENCE:  88

Power 0.65/Poisson Recycled Predictions

Summary:  GLM Analysis of Cost

Id/Gau Id/Pois Log/Gam 0.65/Pois

Pearson 1.0000 0.8818 0.2460 0.9027

Pregibon 0.8913 0.7021 0.1273 0.7469

Mod H&L 0.3487 0.5134 0.6199 0.5870

Summary 0.4360 0.3394 1.4746 0.2441

Difference 22 113 135 88

P-value 0.84 0.26* 0.21 0.39*

*  P-value derived from bootstrap (discussed next)

Bootstrapping the Multivariable Models

• Random draw with replacement from each treatment 
group, thus creating multiple bootstrap samples (also 
referred to as replicates)

• We bootstrap these models primarily to estimate 
nonparameteric p-values and CI on the cost (and QALY) 
scale AND to calculate standard errors for parametric 
tests

• In what follows, we use Stata's most basic bootstrap 
command, bsample
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Structure of the Bootstrap

• Create a dataset to store estimates (bsmvpred.dta)

– Each observation in the dataset represents the results 
from a separate bootstrap replicate

• Create a loop that will draw bootstrapped samples

– Loop N times (we commonly use 2-3000 replicates, 
but in the current example we set N to 200

• Within each bootstrap sample:

– Run the GLMs

– Use method of recycled predictions to predict cost

– Estimated the predicted means

– Keep 1 observation; create variables that represent 
the predicted means; append the means to the 
dataset created to store the bootstrap results

bsmultiv.do

• We’ve provided the bootstrap program bsmultiv.do
(listed in the appendix to these slides)

• bsmultiv.do is a purpose-built bootstrap program for the 
current dataset which estimates the 6 glm models we 
evaluated above in multiple bootstrapped datasets

• Current  program set at 200 replicates (to save time in 
class), but 1000-3000 replicates recommended

• You can modify this program for your own dataset

+-------------------------------------------------------+
| pglmigc0 pglmigc1 pglmipc0 pglmipc1 pglmlgc0 pglmlgc1 |
|-------------------------------------------------------|

1.  | 3108.104 3086.328 3061.173 3133.259 3055.328 3141.872 |
2.  | 2874.748 2848.656  2822.54 2900.865 2820.564 2906.826 |
3.  | 3046.532 3050.864 3002.845 3094.551 2998.789 3099.822 |
4.  |   2981.5 3046.561  2943.12  3084.94 2936.017 3115.354 |
5.  | 2947.865 3088.323 2897.962 3138.226 2887.306 3157.838 |

|-------------------------------------------------------|
6.  | 2991.154 3111.779 2960.855 3142.076   2955.8 3164.625 |
7.  | 2922.351 2956.017 2868.459 3009.909 2869.413 3020.215 |
8.  | 3126.857 3076.667 3078.587 3124.937 3075.845 3140.477 |
9.  |  2978.72 2997.372  2957.52 3018.572   2963.5 3025.937 |
10. | 3077.117 2985.335 3037.682  3024.77 3024.759 3046.886 |

|-------------------------------------------------------|
11. | 3103.544  3119.24 3066.059 3156.725 3049.399 3172.307 |
12. |  2935.81 2977.378 2897.605 3015.583 2874.975  3044.03 |
13. | 2919.418 2900.594 2874.812 2945.201 2868.466 2951.305 |

Selected Boostrap Replicates, bsmvpred.dta
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Summarize (3000 Draws), bsmvpred.dta

Variable |  Obs     Mean Std. Dev.     Min       Max
---------+------------------------------------------
pglmigc0 | 3000 3017.178 90.61395 2719.115  3409.561
pglmigc1 | 3000 3038.906  71.1834 2789.372   3309.99
pglmipc0 | 3000 2972.174 87.65356 2662.726  3357.739
pglmipc1 | 3000 3083.909 70.30924 2820.354  3353.042
pglmlgc0 | 3000 2963.875 88.59197 2654.125  3350.047
---------+------------------------------------------
pglmlgc1 | 3000 3099.931 73.44394 2834.418  3388.661
pglmppc0 | 3000 2984.217 88.75463 2677.809  3373.078
pglmppc1 | 3000 3071.829 70.75923 2811.923  3345.69
pglmigq0 | 3000 .5733505 .0135277 .5249925  .6199619
pglmigq1 | 3000 .6147949  .012695 .5737574  .6603948
---------+------------------------------------------
pglmipq0 | 3000 .5733622 .0134999  .524086  .6191651
pglmipq1 | 3000 .6147833 .0126267 .5750274  .6578885
pglmppq0 | 3000 .5737368 .0134739 .5234635  .6183268
pglmppq1 | 3000 .6144159 .0125472 .5737772  .6558303

Summarize Differences

pglmigcd | 3000  21.72763  106.684  -359.7065  359.5251
---------+---------------------------------------------
pglmipcd | 3000  111.7347  100.3923 -256.0615  426.7947
pglmlgcd | 3000  136.0555  106.5739 -237.0095  456.8499
pglmppcd | 3000   87.6113  102.8321 -287.0056  409.1807
pglmigqd | 3000  .0414444  .0179779 -.0197337   .098896
pglmipqd | 3000  .0414211  .0178393   -.01814   .100709
---------+---------------------------------------------
pglmppqd | 3000  .0406791  .0176908 -.0164816  .1013637

Bootstrap: Non-parametric Tests

• P-value:  count the number of replicates for which the 
difference is above and below 0 (yielding a 1-tailed test 
of the hypothesis of a cost difference)

• CI:  Order the differences from highest to lowest; identify 
the difference for the replicates that represent the 2.5th

and 97.5th percentiles
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Calculating Nonparametric P-Value
. use bsmvpred

. sum pglmigcd

Variable |  Obs       Mean  Std. Dev.      Min       Max
---------+----------------------------------------------
pglmigcd |  3000  21.72763   106.684 -359.7065  359.5251

. local den=r(N)

. sum pglmigcd if pglmigcd<0

Variable |  Obs       Mean  Std. Dev.      Min       Max
---------+----------------------------------------------
pglmigcd |  1273 -76.41349  61.71498 -359.7065 -.0378418

. local num=r(N)

. local p1=`num'/`den'

. if `p1'>0.5 {

. local p1=1-`p1'

. }

. local p2=2*`p1'

. display `p2'

.8486667

Calculating Nonparametric CI

. sort pglmigcd

. list pglmigcd if _n==round((.025*3000),1)+1

| _n==round((.975*3000),1)

+-----------+

|  pglmigcd |

|-----------|

76. | -190.7979 |

2925. |  230.9966 |

+-----------+

Bootstrap: Parametric Tests

• Because each bootstrap replicate represents a mean 
difference, when one sums the replicates, the reported 
"standard deviation" is the standard error

• P-value:  Difference in means / SE = t statistic

• CI:  Difference in means + 1.96 SE = 95% CI
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Calculating Parametric P-Value

Required data:

point estimate for difference (OLS):  22  

DOF:  498

Bootstrapped SE:

. sum pglmigcd

Variable |  Obs     Mean Std. Dev       Min      Max
---------+------------------------------------------

pglmigcd | 3000 21.72763 106.684  -359.7065 359.5251

. local se=r(sd)

. display 2*ttail(494,(22/`se'))

.83670679

Calculating Parametric CI

Required data:
point estimate for difference (OLS):  22  
T-statistic for DOF = 498
Bootstrapped SE:  106.684

. local tstat=invttail(494,.025)

. display `tstat'
1.9647777

. display 22-(`tstat'*`se')
-187.61038

. display 22+(`tstat'*`se')
231.61038

Results (Principal Analysis and Bootstrapped SE)

GLM
Link/fam

PE
P-val
GLM

BS 
SE

P-val
BS

Nonpar
95% CI

Par
95% CI

Cost

id/gau 22 .838 107 .837 -191 to 231 -188 to 232

id/pois 113 .000 100 .264 -84 to 310 -86 to 312

log/gam 135 .210 107 .208 -74 to 344 -76 to 346

pow/pois 88 .000 103 .393 -114 to 290 -114 to 291

QALY

id/gau .0417 .024 .018 .021 .0065 to .0773 .0064 to .0770

id/pois .0417 .465 .018 .021 .0071 to .0767 .0066 to .0768

pow/pois .0408 .4365 .018 .024 .0063 to .0754 .0060 to .0756
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• Basu and Rathouz (2005) have proposed use of 
extended estimating equations (EEE) which estimate the 
link function and family along with the coefficients and 
standard errors

• Tends to need a large number of observations 
(thousands not hundreds) to converge

• Currently can’t take the results and use them with a 
simple GLM command (makes bootstrapping resulting 
models cumbersome)

Extended Estimating Equations

Special Cases (I)

• A substantial proportion of observations have 0 costs

– May pose problems to regression models

– Commonly addressed by developing a “two-part” 
model in which the first part predicts the probability 
that the costs are zero or nonzero and the second 
part predicts the level of costs conditional on there 
being some costs

• 1st part : Logit or probit model

• 2nd part : GLM model

Special Cases (II)

• Censored costs

– Results derived from analyzing only the completed 
cases or observed costs are often biased

– Need to evaluate the “mechanism” that led to the 
missing data and adopt a method that gives unbiased 
results in the face of missingness
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• Use mean difference in costs between treatment groups 
estimated from a multivariable model as the numerator 
for a cost-effectiveness ratio

• Establish criteria for adopting a particular multivariable 
model for analyzing the data prior to unblinding the data 
(i.e., the fact that one model gives a more favorable 
result should not be a reason for its adoption)

• Given that no method will be without problems, it may be 
helpful to report the sensitivity of our results to different 
specifications of the multivariable model

Multivariate Analysis: Summary/Conclusion
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Appendix 1:  Bootstrap Program
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Bootstrap Program:  Creating bsmvpred

* drop _all is similar to clear, but maintains local variables, scalars, and matrices
drop _all

gen pglmigc0=.
gen pglmigc1=.
gen pglmipc0=.
gen pglmipc1=.
gen pglmlgc0=.
gen pglmlgc1=.
gen pglmppc0=.
gen pglmppc1=.
gen pglmigq0=.
gen pglmigq1=.
gen pglmipq0=.
gen pglmipq1=.
gen pglmppq0=.
gen pglmppq1=.
save bsmvpred,replace

Bootstrap Program:  Starting the Bootstrap
set more off
* If you want to be able to replicate your results, set seed
*set seed 2345

* Major loop: runs N times:  forvalues i=1/N {
forvalues i=1/200 {

* Displays a count every 50 iterations (to make sure something is happening)
if (`i'/50)==round((`i'/50),1) {
display `i'
}

drop _all
use rchapter5

* strata(treat):  maintains sample size per group
* cluster(id):  if participants had multiple observations, sample all of them
bsample,strata(treat)

Bootstrap Program:  Cost Estimation (1)

gen temp=treat

quietly glm cost temp dissev bl* race,link(identity) family(gauss)

quietly replace temp=0

quietly predict pglmigc0

quietly replace temp=1

quietly predict pglmigc1

quietly replace temp=treat

quietly glm cost temp dissev bl* race,link(identity) family(poisson)

quietly replace temp=0

quietly predict pglmipc0

quietly replace temp=1

quietly predict pglmipc1
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Bootstrap Program:  Cost Estimation (2)

quietly replace temp=treat

quietly glm cost temp dissev bl* race male,link(log) family(gamma)

quietly replace temp=0

quietly predict pglmlgc0

quietly replace temp=1

quietly predict pglmlgc1

quietly replace temp=treat

quietly glm cost temp dis race blc blq,link(power .65) family(poisson)

quietly replace temp=0

quietly predict pglmppc0

quietly replace temp=1

quietly predict pglmppc1

Bootstrap Program:  QALY Estimation

capture drop nqaly
sum qaly, meanonly
local rmax=r(max)
gen nqaly=r(max)-qaly
save temp,replace

quietly replace temp=treat
quietly regress nqaly temp dissev blc blq
quietly replace temp=0
quietly predict pglmigq0
quietly replace temp=1
quietly predict pglmigq1
quietly replace pglmigq0=`rmax’-pglmigq0
quietly replace pglmigq1=`rmax’-pglmigq1

Bootstrap Program:  QALY Estimation

quietly replace temp=treat
quietly glm qaly temp dissev blcost blqaly,family(poisson) link(identity)
quietly replace temp=0
quietly predict pglmipq0
quietly replace temp=1
quietly predict pglmipq1
quietly replace pglmipq0=`rmax’-pglmipq0
quietly replace pglmipq1=`rmax’-pglmipq1

quietly replace temp=treat
quietly glm qaly temp dissev blc blq,family(poisson) link(power 1.56)
quietly replace temp=0
quietly predict pglmppq0
quietly replace temp=1
quietly predict pglmppq1
quietly replace pglmppq0=`rmax’-pglmppq0
quietly replace pglmppq1=`rmax’-pglmppq1
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Bootstrap Program:  Estimate Treatment Group 
Mean Costs

sum pglmigc0,meanonly
local pglmigc0=r(mean)
sum pglmigc1,meanonly
local pglmigc1=r(mean)
sum pglmipc0,meanonly
local pglmipc0=r(mean)
sum pglmipc1,meanonly
local pglmipc1=r(mean)
sum pglmlgc0,meanonly
local pglmlgc0=r(mean)
sum pglmlgc1,meanonly
local pglmlgc1=r(mean)
sum pglmppc0,meanonly
local pglmppc0=r(mean)
sum pglmppc1,meanonly
local pglmppc1=r(mean)

Bootstrap Program:  Estimate Treatment Group 
Mean QALYS

sum pglmigq0,meanonly
local pglmigq0=r(mean)
sum pglmigq1,meanonly
local pglmigq1=r(mean)
sum pglmipq0,meanonly
local pglmipq0=r(mean)
sum pglmipq1,meanonly
local pglmipq1=r(mean)
sum pglmppq0,meanonly
local pglmppq0=r(mean)
sum pglmppq1,meanonly
local pglmppq1=r(mean)

Bootstrap Program:  Keep 1 Row of Data, 
Substitute Group Means, Append and Save

quietly keep if _n==1

quietly replace pglmigc0=`pglmigc0'
quietly replace pglmigc1=`pglmigc1'
quietly replace pglmipc0=`pglmipc0'
quietly replace pglmipc1=`pglmipc1'
quietly replace pglmlgc0=`pglmlgc0'
quietly replace pglmlgc1=`pglmlgc1'
quietly replace pglmppc0=`pglmppc0'
quietly replace pglmppc1=`pglmppc1'
quietly replace pglmigq0=`pglmigq0'
quietly replace pglmigq1=`pglmigq1‘
quietly replace pglmipq0=`pglmipq0'
quietly replace pglmipq1=`pglmipq1'
quietly replace pglmppq0=`pglmppq0'
quietly replace pglmppq1=`pglmppq1'

keep pglmigc0-pglmppq1
quietly append using bsmvpred
quietly save bsmvpred,replace
}
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Bootstrap Program:Use bsmvpred; Clean Up 
Empty Row; Calculate Mean Differences

drop _all
use bsmvpred
drop if pglmigc0==.
capture drop pglmigcd
capture drop pglmipcd
capture drop pglmlgcd
capture drop pglmppcd
capture drop pglmigqd
capture drop pglmipqd
capture drop pglmppqd

gen pglmigcd=pglmigc1-pglmigc0
gen polsipcd=pglmipc1-pglmipc0
gen pglmlgcd=pglmlgc1-pglmlgc0
gen pglmppcd=pglmppc1-pglmppc0
gen pglmigqd=pglmigq1-pglmigq0
gen pglmipqd=pglmipq1-pglmipq0
gen pglmppqd=pglmppq1-pglmppq0

save,replace

Appendix 2: QALY Evaluation

QALY Evaluation

• While substantial attention has been paid to models for 
the evaluation of cost, substantially less has been paid to 
models for the evaluation of QALYs

• The QALY distribution shares certain complicating 
features with costs, but also has its own complicating 
features

– Predictions should be confined to the theoretical 
range of the preference assessment instrument (e.g., 
–0.594 and 1.0 for the EQ-5D)

– Long, heavy LEFT tails

– (Particularly for pre-scored instruments) Often multi-
modal (see Figure on next slide)

– (Commonly) Large fraction of 1s
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Multivariable Approaches

• There are the beginnings of a literature on multivariable 
approaches
– OLS (or GLM with identity link and gauss family) 

probably commonest 
– Alternatives

• GLM with family (and link) diagnostics
• GLM with a logit link and binomial 1 family or it’s 

equivalent, beta regression (need specialized code 
for Stata)

• (When there are a large fraction of 1s) 2-part 
models

• While we demonstrate some of these methods, more 
work is required before we will be able to identify best 
practice

Implemented Models

• Start with GLM gauss/identity

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family

• Also assess GLM gamma/log

– Evaluate GLM diagnostics

– If necessary, reestimate GLM with better fitting family
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Variance function:  V(u) = 1
Link function:         g(u) = u

[Gaussian]
[Identity]

Log likelihood = 85.080395
AIC -.3203216
BIC -3055.401

qaly Coef Std Err z P>|z| 95% CI

temp .0627749 .0183515 3.42 0.001 .0268067    .0987432

dissev -.1512017 .0831731 -1.82 0.069 -.314218    .0118147

blcost -.0000359 .0000121 -2.96 0.003 -.000060   -.0000122

blqaly .207374 .0633239 3.27 0.001 .0832614   .3314867

_cons .511092 .0620345 8.24 0.000 .3895067   .6326773

Common Starting Point:  GLM with Gauss/Identity

glm qaly temp dissev blcost blqaly, link(identity) family(gauss)

eeict1.dta

FITTED MODEL:   Link = Identity ; Family = Gaussian

Results, Modified Park Test (for Family)

Coefficient:     -.929485

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Gaussian NLLS: 4.2582 0.0391

Poisson: 18.3496 0.0000

Gamma: 42.2987 0.0000

Inverse Gaussian or Wald 76.1054 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 1

Pregibon Link Test: .6741

Modified Hosmer and Lemeshow: .8335

GLM DIAGNOSTICS, Identity/Gauss

eeict1.dta

Troubling Findings

• Coefficient on the modified Park test is negative (we don’t 
have any families that are negative) and p-value for the 
named families are all significantly rejected

• When confronted with coefficient < -0.5, consider 
subtracting all observations from maximum theoretically 
possible observation (e.g., 1.0 for most, if not all, 
instruments)

gen nqaly=1-qaly

sum qaly nqaly

Variable |     Obs        Mean    Std. Dev.      Min       Max

---------+----------------------------------------------------

qaly |     500    .5941653    .2121148    .05679    .96882

nqaly |     500    .4058347    .2121148    .03178    .94321
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Variance function:  V(u) = 1
Link function:         g(u) = u

[Gaussian]
[Identity]

Log likelihood = 85.080395
AIC -.3203216
BIC -3055.401

nqaly Coef Std Err Z P>|z| 95% CI

temp -.0627749 .0183515 -3.42 0.001 -.0987432  -.0268067

dissev .1512017 .0831731 1.82 0.069 -.0118147     .314218

blcost .0000359 .0000121 2.96 0.003 .0000122   .000060

blqaly -.207374 .0633239 -3.27 0.001 -.3314867  -.0832614

_cons .488908 .0620345 7.88 0.000 .3673227   .6104933

glm nqaly temp dissev blcost blqaly, link(identity) family(gauss)

eeict1.dta

Estimate NQALY, GLM with Gauss/Identity

* RECYCLED REDICTIONS

replace temp=0
predict pglmigq0
replace temp=1
predict pglmigq1
replace pglmigq0=1-pglmigq0
replace pglmigq1=1-pglmigq1

sum pglmipq*

Variable | Obs       Mean  Std. Dev.        Min        Max
---------+---------------------------------------------------
pglmigq0 | 500   .5627779   .0473131   .4202132   .6662163
pglmigq1 | 500   .6255528   .0473131   .4829882   .7289913

FITTED MODEL:   Link = Identity ; Family = Gaussian

Results, Modified Park Test (for Family)

Coefficient:     .686724

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson 0.9443 0.3312

Gaussian NLLS: 4.5374 0.0332

Gamma: 16.5942 0.0000

Inverse Gaussian or Wald 51.4871 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: 1

Pregibon Link Test: .6741

Modified Hosmer and Lemeshow: .8335

GLM DIAGNOSTICS, Identity/Gauss

eeict1.dta
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Variance function:  V(u) = u
Link function:         g(u) = u

[poisson]
[Identity]

Log likelihood = -335.2046527
AIC 1.360819
BIC -3023.244

nqaly Coef Std Err z P>|t| 95% CI

Temp -.06313 .0566142 -1.12 0.265 -.1740918    .0478318

dissev .16252 .2609842 0.62 0.533 -.3489997   .6740397

blcost .0000373 .0000387 0.96 0.335 -.0000385   .0001132

blqaly -.199954 .1926091 -1.04 0.299 -.5774608   .1775532

_cons .477935 .190924 2.50 0.012 .1028309    .8512394

glm nqaly temp dissev blcost blqaly, link(identity) family(poisson)

Change Family to Poisson and Rerun Model

eeict1.dta

FITTED MODEL:   Link = Identity ; Family = Poisson

Results, Modified Park Test (for Family)

Coefficient:     .703074

Family, Chi2, and p-value in descending order of likelihood

Family Chi2 P-value

Poisson 0. 8796 0.3483

Gaussian NLLS: 4.9314 0.0264

Gamma: 16.7804 0.0000

Inverse Gaussian or Wald 52.6339 0.0000

Results of tests of GLM Identity link

Pearson Correlation Test: .9396

Pregibon Link Test: .6961

Modified Hosmer and Lemeshow: .8949

GLM DIAGNOSTICS, Identity/Poisson

eeict1.dta

* RECYCLED REDICTIONS

replace temp=0

predict pglmipq0

replace temp=1

predict pglmipq1

replace pglmipq0=1-pglmipq0

replace pglmipq1=1-pglmipq1

sum pglmipq*

Variable | Obs       Mean  Std. Dev.        Min        Max

---------+---------------------------------------------------

pglmigq0 | 500   .5626003   .0479873   .4175745   .6685126

pglmigq1 | 500   .6258303   .0479873   .4807045   .7316426
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Can We Improve the Link? 

• Iteratively evaluate power links (in 0.1 intervals) between 
1 and 2

– Use the modified Park test to select a family

– Rerun the GLM with the power and preferred link

– Evaluate the fit statistics

Power 1.5 Link / Poisson Family

Variance function:  V(u) = u
Link function:    g(u) = u^(1.5)

[Poisson]
[Power]

Log likelihood = -335.199289
AIC 1.360797
BIC -3023.255

nqaly Coef Std Err z P>|z| 95% CI

Temp -.059525 .053554 -1.11 0.266 -.164488   .045439

dissev .156198 .244879 0.64 0.524 -.323756   .636152

blcost .000036 .000037 0.97 0.331 -.000037   .000109

blqaly -.185844 .180880 -1.03 0.304 -.540361   .168674

_cons .322960 .180606 1.78 0.074 -.031021   .676941

Power 1.5 Link / Poisson Family

glm nqaly temp dissev blcost blqaly, link(power 1.5) family(poisson)

eeict1.dta

* RECYCLED REDICTIONS

replace temp=0

predict pglm151pq0

replace temp=1

predict pglm151pq1

replace pglm151pq0=1-pglm151pq0

replace pglm151pq1=1-pglm151pq1

sum pglmpgq*

Variable | Obs       Mean Std. Dev.        Min        Max

-----------+-------------------------------------------------

pglm151pq0 | 500   .5628606   .0458424   .4317995   .6701441

pglm151pq1 | 500   .6254807   .0496324   .485564    .7437032
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Logit Link, Binomial 1 Family

• Alternatively, we can transform the QALY distribution so 
that it ranges between 0 and 1 and use a logit link and 
binomial 1 family (equivalent to beta regression)

local max=1

local min=0 (for EQ-5D, local min=-0.594)

local a=-`min’/(`max’-`min’)

local b=1/(`max’-`min’)

gen bqaly=`a’+(`b’*qaly)

sum qaly bqaly

Variable |     Obs        Mean    Std. Dev.       Min      Max

--------+-----------------------------------------------------

qaly |      500    .5941653    .2121148     .05679   .96822

bqaly |      500    .5941653    .2121148     .05679   .96822

Variance function: V(u)=u*(1-u)
Link function:         g(u)=ln(u/1-u)

[Bernoulli]
[Logit]

Log likelihood = -238.9699913
AIC .97588
BIC -2050.859

nqaly Coef Std Err z P>|z| 95% CI

temp .2626131 .1834617 1.43 0.152 -.0969653   .6221914

dissev -.6328458 .832264 -0.76 0.447 -2.264053   .9983617

blcost -.0001494 .0001208 -1.24 0.216 -.0003862    .0000875

blqaly .8675488 .6338201 1.37 0.171 -.3747157   2.109813

_cons .0373004 .6190775 0.06 0.952 -1.176069    1.25067

GLM with Binomial 1/Logit

glm bqaly temp dissev blcost blqaly, link(logit) family(binomial 1)

eeict1.dta

* RECYCLED REDICTIONS

replace temp=0

predict pglmlbq0

replace temp=1

predict pglmlbq1

sum pglmlbq*

Variable | Obs       Mean  Std. Dev.        Min        Max

---------+-------------------------------------------------

pglmlbq0 | 500   .5628245   .048325    .4159106   .6653128

pglmlbq1 | 500   .6254634   .0461845   .4807669   .7210496
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FITTED MODEL:   Link = Logit ; Family = Binomial

Results of tests of GLM Identity link

Pearson Correlation Test: .9914

Pregibon Link Test: .5605

Modified Hosmer and Lemeshow: .9242

Run Link DIAGNOSTICS, Logit/Binomial 1

eeict1.dta


