

Outline

- · Overview of epidemic models
 - Bernoulli and one of first epidemic models
- Susceptible-Infected-Recovered (SIR) models
- Covid-19 models
 - The Institute for Health Metrics and Evaluation (IHME) COVID-19 hospital forecasting project at the University of Washington
 - The University of Pennsylvania's COVID-19 Hospital Impact Model for Epidemics (CHIME)
 - COVID-19 Acute and Intensive Care Resource Tool (CAIC-RT)

2

Modeling of Infectious Disease

- Epidemic models used to assess mechanisms of disease spread, predict course of outbreak, and evaluate epidemic control strategies
- Typology of models includes compartmental equations, stochastic equations, agent-based simulations, etc.
- Required data/assumptions can include biological description of disease, mechanisms of pathogen transmission, target population social interactions and its spatial structure, etc.

Bernoulli Smallpox Model

- An early version of disease modeling was carried out by Daniel Bernoulli in 1766
- Compared two states: one with and one without the presence of endemic smallpox
 - Smallpox elimination strategy: universal smallpox vaccination at birth
- Final conclusion based on maximizing life expectancy, which was calculated by use of derivatives

4

Mechanism of Prediction

- · Bernoulli model depended on 3 projections:
 - Survival curve that describes (current) population mortality over time
 - Survival curve that describes population mortality once smallpox is eradicated (i.e., all individual vaccinated)
 - Survival curve taking into account risk of dying from vaccination

5

Bernoulli Assumptions

- Individuals infected with smallpox for the first time die with a probability p and survive with a probability 1 – p;
- Each individual has the probability q of being infected each year. In an infinitesimal interval of time dx, the probability of being infected between age x and age x + dx (with dx = 1 for the sake of simplicity) is qdx.
- Individuals who survive smallpox are immunized for the remainder of their lives.

Bernoulli Results

- + Life expectancy with smallpox ≈ 26.57 years
- Life expectancy with smallpox ≈ 29.65 years
- Net Gain: 3.08 years

7

Including Both Susceptible and Infected Populations

- In 1908 Brownlee pointed out need to incorporate both host population and susceptibles in epidemic modeling
- Ross (1910) and Hamer (1928) applied law of mass action to explain epidemic behavior
 - Law of mass action: Proposition that rate of a chemical reaction is directly proportional to product of activities or concentrations of reactants.
 - If there are 2 reactants, activities of both affect rate of reaction
- This work formed basis of compartmental models of disease in mathematical epidemiology

8

Compartmental Models

- Divide a population into categories, e.g., susceptible (S), infected (I), and recovered (immune/dead) (R) (SIR models)
- SIR (and related) models apply well to many disease systems and provide useful outcomes in many circumstances when Mass Action Principle applies

Beyond Compartment Models

- Molecules in ideal solution, i.e., subjects of law of mass action, are considered to mix homogeneously
- Human and animal populations generally are considered not to
- When nonhomogeneous mixing is great enough, predictions from SIR model may be invalid

 When there is substantial non-homogeneity, "more

sophisticated" models may be useful

10

11

Static vs Dynamic Epidemic Models

- Static models: Risk/force of infection (probability per unit time) unrelated to proportion susceptible (e.g., risk/force remains constant whether there are 80% susceptible or 10% susceptible).
- Dynamic models: Risk/force of infection changes based on proportion of susceptible (e.g., herd immunity, in which risk/force decreases as number of susceptible diminishes)

- Deterministic models: individuals assigned to different subgroups (or compartments)
- Transition rates from one class to another are mathematically expressed as derivatives
 - i.e., model formulated using differential equations
- In building such models:
 - Assumed that population size in a compartment is differentiable with respect to time
 - Epidemic process typically (but not necessarily) deterministic
 - → Changes in population of a compartment can be calculated using only history used to develop model

14

Common Epidemic Model Assumptions

- Stationary age distribution: all live to a constant age and same number of people at every age
- Homogeneous mixing: contacts are made between everyone at random (makes math tractable)
 - Disadvantage: Available data and simulations provide evidence that "disease spreading is largely affected by heterogeneity of contact network of population."
 - BUT may be reasonable for modelling pathogen transmission for airborne disease (not STDs)
 - AND some studies have shown that randommixing can produce reliable predictions for both households and heterogeneous contact networks

(Basic) Reproduction Number

- Basic reproduction number (R0, or R naught): A measure of how transferable a disease is
- Equals average number of people that a single infected (infectious) person will infect over the course of their infection (assuming a fully susceptible population)
- · Can be computed as a ratio of known rates over time

16

Implications of R0 for Epidemic Dynamics

- If R0 > 1, then each person on average infects more than one other person so disease will spread
- If R0 < 1, then each person infects fewer than one person on average so disease will die out
- If R0 = 1, then each person will infect exactly one other person, so disease will become endemic
 - i.e., will move throughout the population but not increase or decrease
- Value of intervention can be judged based on whether it changes R0 so that it is greater than 1, equal 1, or less than 1

17

Calculating Basic Reproduction Number

- If an infected individual contacts $\boldsymbol{\beta}$ other people per unit time, and
- If all of contacts are assumed to contract the disease, and
- If disease has a mean infectious period of 1/y
- Then R0 = β/γ
- Liu et al.: "the classical concept of the basic reproduction number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This [finding]...can be simply explained by the (clustered) contact structure of the population."

β (Beta)

- All susceptibles have an equal probability of contracting disease $(\boldsymbol{\beta})$
- β controls how often a susceptible-infected contact results in a new infection

19

β (Beta) (cont.)

- Smith and Moore suggest there is no direct way to observe β. They instead suggest:
 - Define ratio of β to γ as β * 1/γ (i.e., R0 or contact number (C) which represents number of close contact days times number of days infected; also equals number of close contacts per infected individual)
 - R0/C, which represents relative contagiousness of disease, can be estimated after an epidemic has run its course
 - $-\beta$ can then be calculated as R0 γ or c γ

20

Gamma (y)

- All infected individuals have an equal probability of recovering from disease (γ)
- γ controls the rate at which an infected individual recovers and moves into the resistant phase
- Fraction γ of infected individuals recovering in a given time period can be estimated from observation of infected individuals
 - Specifically, γ is roughly the reciprocal of the number of days an individual is sick enough to infect others.

- One of simplest compartmental models
- "Reasonably predictive" for human to human
- transmission where recovery confers lasting resistance • Assumes:
 - Every susceptible has equal probability of infection (β)
 - Every infected has equal probability of recovering (γ)
 - Rate of infection/recovery much faster than time scale of births and deaths, so latter are ignored

SIR Epidemic Model (2)

- One distinction between this class of models and models we build in treeage is that they are expressed by a set of ordinary differential equations and have an "analytic solution in implicit form"
 - More recently an exact analytical solution has been proposed.

23

SIR Model Fluctuations

- · Fluctuates with time
 - During an epidemic, the number of susceptible individuals falls rapidly as more of them are infected and thus enter the infected and recovered compartments
 - Disease cannot break out again until number of susceptibles has built back up, e.g. as a result of offspring being born into susceptible compartment.
- · Fluctuates within individual
 - Each member of population typically progresses from susceptible to infected to recovered

Susceptible, Infected, and Recovered

- · Susceptible S(t), number not yet infected at time t
- Infected I(t), number who have been infected and are capable of spreading the disease at time t
- · Recovered R(t), number immunized or dead at time t
- At any point in time, S(t) + I(t) + R(t) = 1 (or 100, or 1000, etc.)
 - 1 if working with probabilities
 - 100 or 1000 if we assume a population of 100 or 1000

25

SIR "Transition" Rates

- Between S and I: S × I × β / N
 - Where S = number/proportion of population who are susceptible; I = number of proportion who are infected; β is how often a susceptible-infected contact results in a new infection; and N = the total number in the sample (or for proportions, 1)
- Between I and R: γ
 - If the duration of the infective period is denoted D, then γ = 1/D, since an individual experiences one recovery in D units of time
- Typically assumed estimates of permanence of individuals in "states" are random variables with exponential distribution, although more realistic distributions can be used

			Recover	
	997	3	0	
2	996.1693	3.49745	0.3333	
3	995.2015	4.07658	0.72187	
ļ.	994.0704	4.750508	1.174775	
5	992.7631	5.534362	1.702556	
6	991.237	6.445539	2.317424	
,	989.4625	7.504	3.033523	
3	987.4002	8.732579	3.867218	
)	985.053	10.1573	4.837407	
Assumpt v = 0.277	ions: R0 = 2.5 75. Initial dist	; γ = 1/9 days ribution 997, 3	; β = R0 × 3, 0	

	"Trar	nsition" Prob	abilities	
Period	$S \rightarrow S$	S→ I		$I \rightarrow R$
1 to 2	0.99917	0.00083	0.88889	0.11111
2 to 3	0.99903	0.00097	0.88889	0.11111
3 to 4	0.99887	0.00113	0.88889	0.11111
4 to 5	0.99868	0.00132	0.88889	0.11111

Extensions of SIR models

- SIRD model: Susceptible-Infected-Recovered-Deceased (distinguishes between recovered and now immune vs deceased)
- MSIR model: Begin immune (e.g., infants) and then
 become susceptible
- SIS: No immunity (cycle between susceptible and infectious)
- SIRS: Time immune/time recovered limited
- SEIS and SEIR: latent period when person is exposed (E) but not infectious (I)
- SICR: Susceptible-Infected-Either Carrier (C) or Recovered (R)

Three US Covid-19 Models

(Relies heavily on / steals from)

Wong J. Pandemic surge models in time of severe acute respiratory syndrome coronaviras-2: Wrong or useful? Ann Intern Med. 16 April 2020

35

The Models

- The Institute for Health Metrics and Evaluation (IHME) COVID-19 hospital forecasting project at the University of Washington
- The University of Pennsylvania's COVID-19 Hospital Impact Model for Epidemics (CHIME)
- COVID-19 Acute and Intensive Care Resource Tool (CAIC-RT)

Model Goals

- At least initially: Forecast demand for hospital such as acute and critical care beds and mechanical ventilators and determine when peak demand will occur
- At least some have added on goals
 - e.g., IHME model
 - Evaluates effect of interventions
 - Provides input for state-by-state dates when restrictions can be eased
 - Quantifies where COVID-19 daily deaths have peaked and how long peaks last

37

Fit for Purpose

- Rapidly developed to be fit for purpose and user friendly
- At least some regularly updated with new data and new capabilities

DIFFER IN METHODOLOGICAL APPROACH AND DEGREE TO WHICH PROJECTIONS CAN BE CUSTOMIZED TO LOCAL CONTEXT

38

IHME COVID-19 hospital forecasting project

Preprint of paper:

http://www.healthdata.org/sites/default/files/fi les/Projects/COVID/RA_COVIDforecasting-USA-EEA_042120.pdf

Mortality Prediction

- · Entire model derives from mortality prediction
- Uses observed mortality curves in cities that have already reached their peak during the pandemic to predict deaths in other areas that have not yet had their peaks
 - Mortality predictions initially based on observed mortality in Wuhan City
 - Mortality data augmented to include Italy, Spain, France, and Korea (and more?)
- Mortality curve fitting assumes shape of curve (with adjustments for timing of policy interventions) and incorporates infectious disease transmission

40

Predicting Mortality Peak

"When a given location reaches its peak, the natural log
of the daily death curve should either essentially reach or
pass where the curve's tangent line is horizontal. We fit a
spline to the natural log of the daily death rate and
identify the peak where the slope of the spline is 0."

41

Epidemiologic Roots

- Mortality prediction has roots in work by William Farr in mid-1800s
- Farr fit curves through epidemic mortality data in 1840 and found epidemics could be described as bell-shaped curves (approximate normal distributions)
- "[The curve] ascends first rapidly and then slowly, until at last it attains a maximum, makes a turn, and falls down more rapidly than it mounted" (i.e., asymmetric, but approximately normal)

Farr's "I	_aw", English Cattle	e Plague of 18	65/1866
	Date	Total Cases	
	October 7, 1865	11,300	
	November 4	20,897	
	December 2	39,714	
	December 30	73,549	
	January 27, 1866	120,740	
 Mr. Low disease yourself have be there is which h hencefc 	re's speech to Parliam under control by the r for calamity[Y]ou v een thousands, grow to no reason why the sa as prevailed hitherto s rth."	ent: "If we do not niddle of April, pr vill see the avera o tens of thousan me terrible law o hould not prevail	get the repare ges, which ds, for f increase

		Farr's Obse	ervation		
	Date	Total Cases	New Cases	% Increase	
	October 7, 1865	11,300			
	November 4	20,897	9597		
	December 2	39,714	18,817	96	
	December 30	73,549	33,835	80	
	January 27, 1866	120,740	47,191	40	
•	"[A]lthough the a nearly double the increase did not ratio of increase	ttacks in the ose in the firs continueT goes on rapi	second perio t period, that he real law ir dly decreasin	d…were rate of nplies that th g	e
				30	

November 4	9597		
December 2	18,817	(96%)	(96%)
December 30	33,835	(80%)	(80%)
January 27, 1866	47,191	(40%)	(40%)
February 24		43,182 (-8%)	57,004 (20%)
March 24		21,927 (-49%)	27,958 (-51%)
April 21		5,225 (-76%)	15,856 (-32%)
May 19		494 (-90%)	14,734 (-7%)
June 16		16 (-96%)	5,000(-66%)
Epidemic ende	ed 2 weeks aft	er Farr predict	ed it would

Other Covid-19 Outcomes

- Predicted Total Cases
 - Derived using predicted deaths and infection fatality ratios (IFR)
- Predicted Hospitalizations
 - Derived using hospitalization-to-death ratios, from which it predicts intensive care unit (ICU) and mechanical ventilator use

46

Interventions

- As of April 17, model includes the effects of a number interventions including 6 categories of social distancing measures
- Predictions reflect effect of social distancing policies enacted and people's behavioral response to these policies
- Uses 3 different models (short-term day 5, long-term day 20, and a time-dependent weighting of these predictions) to incorporate these effects

47

The University of Pennsylvania's COVID-19 Hospital Impact Model for Epidemics (CHIME)

Weissman GE, Crane-Droesch A, Chivers C, et al. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Ann Intern Med. 2020. [PMID: 32259197] doi:10.7326/M20-1260

CHIME Model

- Dynamic transmission or mechanistic model
- Simplifies SIR disease inputs into:
 - Regional population at risk, where the number infected depends on the regional population size
 - Hospital market share
 - Hospitalized census
- Assumes uniform or homogeneous susceptibility to infection risk, regardless of population density, contact location, or heterogeneity in infectivity

49

Other Assumptions/Inputs

- Severity impact of infection includes the proportion of acute and ICU hospitalization and mechanical ventilation and the average length of stay (LOS) in hospital and ICU with or without a ventilator
- Calculates basic reproductive number (R0) from inputs for doubling time and recovery (infectiousness) in days with a constant mitigation reduction from social distancing at date of implementation
- Can incorporate asymptomatic or mild infections by accounting for such persons when estimating proportions of need for hospitalization, ICU care, and mechanical ventilation

50

COVID-19 Acute and Intensive Care Resource Tool (CAIC-RT)

Giannakeas V, Bhatia D, Warkentin MT, et al. Estimating the maximum capacity of COVID-19 cases manageable per day given a health care system's constrained resources. Ann Intern Med. 16 April 2020. [Epub ahead of print].

CAIC-RT

- Hospital planning tool originating from models used in operations research
- Seeks to maximize outputs given constraints and identify queues and bottlenecks that may benefit from additional resources
- Ignores epidemic and focuses on capacity imposed by resource limitations
- Examines steady-state consequences of constrained hospital resources on patient throughput

52

Model Flexibility

- · Can be tailored to:
 - Local age distribution of patients with SARS–CoV-2 infection presenting to a health care system or hospital
 - Age-stratified proportion requiring hospitalization, critical care, and mechanical ventilation
- At beginning of epidemic, system considered to have sufficient resource capacity to care for all patients with SARS–CoV-2 infection
 - Eventually, with full use, steady-state assumption becomes necessary

Are the Models Good Enough?

- We've previously said strength of models depends on strength of assumptions and strength of data
- No model is "right," but can be useful
- Don't KNOW the outcome of Covid pandemic
- But models might improve our guesses about the policies we should adopt to address it

