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Outline

• Overview of epidemic models

– Bernoulli and one of first epidemic models

– Susceptible-Infected-Recovered (SIR) models
• Covid-19 models

– The Institute for Health Metrics and Evaluation (IHME) 
COVID-19 hospital forecasting project at the 
University of Washington

– The University of Pennsylvania's COVID-19 Hospital 
Impact Model for Epidemics (CHIME)

– COVID-19 Acute and Intensive Care Resource Tool 
(CAIC-RT)

Modeling of Infectious Disease

• Epidemic models used to assess mechanisms of 
disease spread, predict course of outbreak, and evaluate 
epidemic control strategies

• Typology of models includes compartmental equations, 
stochastic equations, agent-based simulations, etc.

• Required data/assumptions can include biological 
description of disease, mechanisms of pathogen 
transmission, target population social interactions and its 
spatial structure, etc.
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Bernoulli Smallpox Model

• An early version of disease modeling was carried out by 
Daniel Bernoulli in 1766

• Compared two states: one with and one without the 
presence of endemic smallpox

– Smallpox elimination strategy: universal smallpox 
vaccination at birth

• Final conclusion based on maximizing life expectancy, 
which was calculated by use of derivatives

Mechanism of Prediction

• Bernoulli model depended on 3 projections:

– Survival curve that describes (current) population 
mortality over time

– Survival curve that describes population mortality 
once smallpox is eradicated (i.e., all individual 
vaccinated)

– Survival curve taking into account risk of dying from 
vaccination

Bernoulli Assumptions

• Individuals infected with smallpox for the first time die 
with a probability p and survive with a probability 1 − p;

• Each individual has the probability q of being infected 
each year. In an infinitesimal interval of time dx, the 
probability of being infected between age x and age x + 
dx (with dx = 1 for the sake of simplicity) is qdx.

• Individuals who survive smallpox are immunized for the 
remainder of their lives.
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Bernoulli Results

• Life expectancy with smallpox  26.57 years

• Life expectancy with smallpox  29.65 years

• Net Gain: 3.08 years

Including Both Susceptible and Infected Populations

• In 1908 Brownlee pointed out need to incorporate both 
host population and susceptibles in epidemic modeling

• Ross (1910) and Hamer (1928) applied law of mass 
action to explain epidemic behavior 

– Law of mass action: Proposition that rate of a 
chemical reaction is directly proportional to product of 
activities or concentrations of reactants.

• If there are 2 reactants, activities of both affect rate 
of reaction

• This work formed basis of compartmental models of 
disease in mathematical epidemiology

Compartmental Models

• Divide a population into categories, e.g., susceptible (S), 
infected (I), and recovered (immune/dead) (R) (SIR 
models)

• SIR (and related) models apply well to many disease 
systems and provide useful outcomes in many 
circumstances when Mass Action Principle applies
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Beyond Compartment Models

• Molecules in ideal solution, i.e., subjects of law of mass 
action, are considered to mix homogeneously

• Human and animal populations generally are considered 
not to

• When nonhomogeneous mixing is great enough, 
predictions from SIR model may be invalid

– When there is substantial non-homogeneity, “more 
sophisticated” models may be useful

Broad Categorization of Epidemic Models

Static vs Dynamic Epidemic Models

• Static models: Risk/force of infection (probability per unit 
time) unrelated to proportion susceptible (e.g., risk/force 
remains constant whether there are 80% susceptible or 
10% susceptible).

• Dynamic models: Risk/force of infection changes based 
on proportion of susceptible (e.g., herd immunity, in 
which  risk/force decreases as number of susceptible 
diminishes)
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Deterministic Vs Stochastic Epidemic Models

• Deterministic models: individuals assigned to different 
subgroups (or compartments)

• Transition rates from one class to another are 
mathematically expressed as derivatives

– i.e., model formulated using differential equations

• In building such models:

– Assumed that population size in a compartment is 
differentiable with respect to time

– Epidemic process typically (but not necessarily) 
deterministic

 Changes in population of a compartment can be
calculated using only history used to
develop model

Deterministic Vs Stochastic Epidemic Models (2)

• Stochastic: chance variation. Compartmental models 
possible, but more complicated for (closed-form?) 
analysis

Common Epidemic Model Assumptions

• Stationary age distribution: all live to a constant age and 
same number of people at every age

• Homogeneous mixing: contacts are made between 
everyone at random (makes math tractable)

– Disadvantage: Available data and simulations provide 
evidence that “disease spreading is largely affected 
by heterogeneity of contact network of population.”

• BUT may be reasonable for modelling pathogen 
transmission for airborne disease (not STDs)

• AND some studies have shown that random-
mixing can produce reliable predictions for both 
households and heterogeneous contact networks
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(Basic) Reproduction Number

• Basic reproduction number (R0, or R naught): A 
measure of how transferable a disease is

• Equals average number of people that a single infected 
(infectious) person will infect over the course of their 
infection  (assuming a fully susceptible population)

• Can be computed as a ratio of known rates over time

Implications of R0 for Epidemic Dynamics

• If R0 > 1, then each person on average infects more 
than one other person so disease will spread

• If R0 < 1, then each person infects fewer than one 
person on average so disease will die out

• If R0 = 1, then each person will infect exactly one other 
person, so disease will become endemic

– i.e., will move throughout the population but not 
increase or decrease

• Value of intervention can be judged based on whether it 
changes R0 so that it is greater than 1, equal 1, or less 
than 1

Calculating Basic Reproduction Number

• If an infected individual contacts β other people per unit 
time, and 

• If all of contacts are assumed to contract the disease, 
and

• If disease has a mean infectious period of 1/γ

• Then R0 = β/γ

• Liu et al.: “the classical concept of the basic reproduction 
number is untenable in realistic populations, and it does 
not provide any conceptual understanding of the 
epidemic evolution. This [finding]…can be simply 
explained by the (clustered) contact structure of the 
population.”
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β (Beta)

• All susceptibles have an equal probability of contracting 
disease (β)

• β controls how often a susceptible-infected contact 
results in a new infection

β (Beta) (cont.)

• Smith and Moore suggest there is no direct way to 
observe β. They instead suggest:

– Define ratio of β to γ as β * 1/γ (i.e., R0 or contact 
number (C) which represents number of close contact 
days times number of days infected; also equals 
number of close contacts per infected individual)

– R0/C, which represents relative contagiousness of 
disease, can be estimated after an epidemic has run 
its course

– β can then be calculated as R0 γ or cγ 

Gamma (γ)

• All infected individuals have an equal probability of 
recovering from disease (γ)

• γ controls the rate at which an infected individual 
recovers and moves into the resistant phase

• Fraction γ of infected individuals recovering in a given 
time period can be estimated from observation of 
infected individuals

– Specifically, γ is roughly the reciprocal of the number 
of days an individual is sick enough to infect others.
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SIR Epidemic Model (Kermack and McKendrick, 1927)

• One of  simplest compartmental models

• “Reasonably predictive” for human to human 
transmission where recovery confers lasting resistance

• Assumes:

– Every susceptible has equal probability of infection (β)

– Every infected has equal probability of recovering (γ)

– Rate of infection/recovery much faster than time scale 
of births and deaths, so latter are ignored

SIR Epidemic Model (2)

• One distinction between this class of models and models 
we build in treeage is that they are expressed by a set of 
ordinary differential equations and have an “analytic 
solution in implicit form”

– More recently an exact analytical solution has been 
proposed.

SIR Model Fluctuations

• Fluctuates with time

– During an epidemic, the number of susceptible  
individuals falls rapidly as more of them are infected 
and thus enter the infected and recovered 
compartments

• Disease cannot break out again until number of 
susceptibles has built back up, e.g. as a result of 
offspring being born into susceptible compartment.

• Fluctuates within individual

– Each member of population typically progresses from 
susceptible to infected to recovered
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Susceptible, Infected, and Recovered

• Susceptible S(t), number not yet infected at time t

• Infected I(t), number who have been infected and are 
capable of spreading the disease at time t

• Recovered R(t), number immunized or dead at time t

• At any point in time, S(t) + I(t) + R(t) = 1 (or 100, or 1000, 
etc.)

– 1 if working with probabilities

– 100 or 1000 if we assume a population of 100 or 1000

SIR “Transition” Rates

• Between S and I: S ˣ I ˣ β / N

– Where S = number/proportion of population who are 
susceptible; I = number of proportion who are 
infected; β is how often a susceptible-infected contact 
results in a new infection; and N = the total number in 
the sample (or for proportions, 1)

• Between I and R: γ

– If the duration of the infective period is denoted D, 
then γ = 1/D, since an individual experiences one 
recovery in D units of time

• Typically assumed estimates of permanence of 
individuals in “states” are random variables with 
exponential distribution, although more realistic 
distributions can be used

S ˣ I ˣ β / N

• Number of patients susceptible and number of patients 
infected equally important to rate of new cases

• IF S+I is fixed (e.g., 1.0), highest infection rate occurs 
when S = I

S I Rate

0.1 ˣ 0.9 = 0.09

0.2 ˣ 0.8 = 0.16

0.3 ˣ 0.7 = 0.21

0.4 ˣ 0.6 = 0.24

0.5 ˣ 0.5 = 0.25

0.6 ˣ 0.4 = 0.24

0.7 ˣ 0.3 = 0.21

0.8 ˣ 0.2 = 0.16

0.9 ˣ 0.1 = 0.09
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Approximate Numbers/Probabilities per Period

• Simple math

– ~Numbers in:

• S this period = Si-1 – (Si-1 * Ii-1 * β) / N

• I this period = (Ii-1 * (1-γ)) + (Si-1 * Ii-1 * β) / N

• R this period = Ri-1 + (Ii-1 * γ)

• Would be able to build in Treeage if can access 
probability of being in a state in prior period

– But not sure these probabilities are accessible

• More appropriate to base estimates on integrals

– One web-based SIR application uses fourth-order 
Runge-Kutta algorithm for numeric solutions

Approximate Calculations, Period 2 *

• # new cases: 
997*3*0.27775 / 
1000 = 0.83075025

• # recovered cases:
3*0.1111 = 0.33333

• New distribution

• Susp: 997 – 0.83075 
= 996.1693

• Infect: 3+0.83075-
0.3333 = 3.49745

• Recover: 0.3333

Period Suscept Infect Recover

1 997 3 0

2 996.1693 3.49745 0.3333

3

4
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* Assumptions: R0 = 2.5; γ = 1/9 days; β = R0 
ˣ γ = 0.27775. Initial distribution 997, 3, 0

Approximate Calculations, Period 3

• # new cases: 
996.17*3.5*0.27775 
/ 1000 = 0.83006

• # recovered cases:
3.5*0.1111 =
0.38857

• New distribution

• Susp: 996.1693 -
0.83006 = 995.2015

• Infect: 
3.49745+0.83006-
0.38857 = 4.07658

• Recovered: 0.72187

Period Suscept Infect Recover

1 997 3 0

2 996.1693 3.49745 0.3333

3 995.2015 4.07658 0.72187

4

5

6

7

8

9

Assumptions: R0 = 2.5; γ = 1/9 days; β = R0 ˣ 
γ = 0.27775. Initial distribution 997, 3, 0
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Approximate Calculations, Periods 4-9

Period Suscept Infect Recover

1 997 3 0

2 996.1693 3.49745 0.3333

3 995.2015 4.07658 0.72187

4 994.0704 4.750508 1.174775

5 992.7631 5.534362 1.702556

6 991.237 6.445539 2.317424

7 989.4625 7.504 3.033523

8 987.4002 8.732579 3.867218

9 985.053 10.1573 4.837407

Assumptions: R0 = 2.5; γ = 1/9 days; β = R0 ˣ 
γ = 0.27775. Initial distribution 997, 3, 0

“Transition” Probabilities

Period S S S I I I I R

1 to 2 0.99917 0.00083 0.88889 0.11111

2 to 3 0.99903 0.00097 0.88889 0.11111

3 to 4 0.99887 0.00113 0.88889 0.11111

4 to 5 0.99868 0.00132 0.88889 0.11111

• http://www.public.asu.edu/~hnesse/classes/sir.html

(One of many) Online SIR Models With Modifiable Inputs
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Extensions of SIR models

• SIRD model: Susceptible-Infected-Recovered-Deceased 
(distinguishes between recovered and now immune vs 
deceased)

• MSIR model: Begin immune (e.g., infants) and then 
become susceptible

• SIS: No immunity (cycle between susceptible and 
infectious)

• SIRS: Time immune/time recovered limited

• SEIS and SEIR: latent period when person is exposed 
(E) but not infectious (I)

• SICR: Susceptible-Infected-Either Carrier (C) or 
Recovered (R)

Three US Covid-19 Models

(Relies heavily on / steals from)

Wong J. Pandemic surge models in time of 
severe acute respiratory syndrome 

coronaviras-2: Wrong or useful? Ann 
Intern Med. 16 April 2020

The Models

• The Institute for Health Metrics and Evaluation (IHME) 
COVID-19 hospital forecasting project at the University 
of Washington

• The University of Pennsylvania's COVID-19 Hospital 
Impact Model for Epidemics (CHIME)

• COVID-19 Acute and Intensive Care Resource Tool 
(CAIC-RT)
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Model Goals

• At least initially: Forecast demand for hospital such as 
acute and critical care beds and mechanical ventilators 
and determine when peak demand will occur

• At least some have added on goals

– e.g., IHME model

• Evaluates effect of interventions

• Provides input for state-by-state dates when 
restrictions can be eased

• Quantifies where COVID-19 daily deaths have 
peaked and how long peaks last

Fit for Purpose

• Rapidly developed to be fit for purpose and user friendly

• At least some regularly updated with new data and new 
capabilities

DIFFER IN METHODOLOGICAL APPROACH AND 
DEGREE TO WHICH PROJECTIONS CAN BE 

CUSTOMIZED TO LOCAL CONTEXT

IHME COVID-19 hospital forecasting project

Preprint of paper:

http://www.healthdata.org/sites/default/files/fi
les/Projects/COVID/RA_COVID-

forecasting-USA-EEA_042120.pdf
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Mortality Prediction

• Entire model derives from mortality prediction

• Uses observed mortality curves in cities that have 
already reached their peak during the pandemic to 
predict deaths in other areas that have not yet had their 
peaks

– Mortality predictions initially based on observed 
mortality in Wuhan City

– Mortality data augmented to include Italy, Spain, 
France, and Korea (and more?)

• Mortality curve fitting assumes shape of curve (with 
adjustments for timing of policy interventions) and 
incorporates infectious disease transmission

Predicting Mortality Peak

• “When a given location reaches its peak, the natural log 
of the daily death curve should either essentially reach or 
pass where the curve’s tangent line is horizontal. We fit a 
spline to the natural log of the daily death rate and 
identify the peak where the slope of the spline is 0.”

Epidemiologic Roots

• Mortality prediction has roots in work by William Farr in 
mid-1800s

• Farr fit curves through epidemic mortality data in 1840 
and found epidemics could be described as bell-shaped 
curves (approximate normal distributions)

• “[The curve] ascends first rapidly and then slowly, until at 
last it attains a maximum, makes a turn, and falls down 
more rapidly than it mounted” (i.e., asymmetric, but 
approximately normal)
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Farr’s “Law”, English Cattle Plague of 1865/1866

• Mr. Lowe’s speech to Parliament: “If we do not get the 
disease under control by the middle of April, prepare 
yourself for calamity….[Y]ou will see the averages, which 
have been thousands, grow to tens of thousands, for 
there is no reason why the same terrible law of increase 
which has prevailed hitherto should not prevail 
henceforth.”

Date Total Cases

October 7, 1865 11,300

November 4 20,897

December 2 39,714

December 30 73,549

January 27, 1866 120,740

Farr’s Observation

• “[A]lthough the attacks in the second period…were 
nearly double those in the first period, that rate of 
increase did not continue….The real law implies that the 
ratio of increase goes on rapidly decreasing….

Date Total Cases New Cases % Increase

October 7, 1865 11,300 -- --

November 4 20,897 9597 --

December 2 39,714 18,817 96

December 30 73,549 33,835 80

January 27, 1866 120,740 47,191 40

Farr’s Predictions (and Later Observed Numbers)

Date
New Cases 

Through 1/27
Predicted

Cases, “Law”
Observed

November 4 9597

December 2 18,817 (96%) (96%)

December 30 33,835 (80%) (80%)

January 27, 1866 47,191 (40%) (40%)

February 24 43,182 (-8%) 57,004 (20%)

March 24 21,927 (-49%) 27,958 (-51%)

April 21 5,225 (-76%) 15,856 (-32%)

May 19 494 (-90%) 14,734 (-7%)

June 16 16 (-96%) 5,000(-66%)

• Epidemic ended 2 weeks after Farr predicted it would
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Other Covid-19 Outcomes

• Predicted Total Cases

– Derived using predicted deaths and infection fatality 
ratios (IFR)

• Predicted Hospitalizations

– Derived using hospitalization-to-death ratios, from 
which it predicts intensive care unit (ICU) and 
mechanical ventilator use

Interventions

• As of April 17, model includes the effects of a number 
interventions including 6 categories of social distancing 
measures

• Predictions reflect effect of  social distancing policies 
enacted and people’s behavioral response to these 
policies

• Uses 3 different models (short-term day 5, long-term day 
20, and a time-dependent weighting of these predictions) 
to incorporate these effects

The University of Pennsylvania's COVID-19 
Hospital Impact Model for Epidemics 

(CHIME)

Weissman GE, Crane-Droesch A, Chivers C, et al. Locally 
informed simulation to predict hospital capacity needs 
during the COVID-19 pandemic. Ann Intern Med. 2020. 
[PMID: 32259197] doi:10.7326/M20-1260
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CHIME Model

• Dynamic transmission or mechanistic model

• Simplifies SIR disease inputs into:

– Regional population at risk, where the number 
infected depends on the regional population size

– Hospital market share

– Hospitalized census

• Assumes uniform or homogeneous susceptibility to 
infection risk, regardless of population density, contact 
location, or heterogeneity in infectivity

Other Assumptions/Inputs

• Severity impact of infection includes the proportion of 
acute and ICU hospitalization and mechanical ventilation 
and the average length of stay (LOS) in hospital and ICU 
with or without a ventilator

• Calculates basic reproductive number (R0) from inputs 
for doubling time and recovery (infectiousness) in days 
with a constant mitigation reduction from social 
distancing at date of implementation

• Can incorporate asymptomatic or mild infections by 
accounting for such persons when estimating 
proportions of need for hospitalization, ICU care, and 
mechanical ventilation

COVID-19 Acute and Intensive Care 
Resource Tool (CAIC-RT)

Giannakeas V, Bhatia D, Warkentin MT, et al. Estimating 
the maximum capacity of COVID-19 cases manageable 
per day given a health care system's constrained 
resources. Ann Intern Med. 16 April 2020. [Epub ahead 
of print].
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CAIC-RT

• Hospital planning tool originating from models used in 
operations research

• Seeks to maximize outputs given constraints and identify 
queues and bottlenecks that may benefit from additional 
resources

• Ignores epidemic and focuses on capacity imposed by 
resource limitations

• Examines steady-state consequences of constrained 
hospital resources on patient throughput

Model Flexibility

• Can be tailored to:

– Local age distribution of patients with SARS–CoV-2 
infection presenting to a health care system or 
hospital

– Age-stratified proportion requiring hospitalization, 
critical care, and mechanical ventilation

• At beginning of epidemic, system considered to have 
sufficient resource capacity to care for all patients with 
SARS–CoV-2 infection

– Eventually, with full use, steady-state assumption 
becomes necessary

The COVID-19 Acute and Intensive Care Resource Tool 
(CAIC-RT) is open access and available at:

https://caic-rt.shinyapps.io/CAIC-RT

52

53

54



19

Are the Models Good Enough?

• We’ve previously said strength of models depends on 
strength of assumptions and strength of data

• No model is “right,” but can be useful

• Don’t KNOW the outcome of Covid pandemic

• But models might improve our guesses about the 
policies we should adopt to address it
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