

Outline

-
-
- - COVID-19 hospital forecasting project at the University of Washington
	- Impact Model for Epidemics (CHIME)
	- (CAIC-RT)

2

Modeling of Infectious Disease

- Overview of epidemic models
• Esmoulil and one of first epidemic models
• Covid-19 models
• Covid-19 models
• Covid-19 models
• The Institute for Health Metrics and Evaluation (IHME)
• CoVID-19 hospital forcessing projet disease spread, predict course of outbreak, and evaluate epidemic control strategies
- stochastic equations, agent-based simulations, etc.
- Overview of epidemic models

 Bernoulli and one of first epidemic models

 Susceptible-Infected-Recovered (SIR) models

 Covid-19 models

 The Institute for Health Metrics and Evaluation (IHME)

 COVID-19 hospital • Overview of epidemic models

• Bernoulli and one of first epidemic models

• Covid-19 models

• Covid-19 models

• The Institute for Health Metrics and Evaluation (HME)

• COVID-19 Hospital forcessing project at the

Int description of disease, mechanisms of pathogen transmission, target population social interactions and its spatial structure, etc.

Bernoulli Smallpox Model

- An early version of disease modeling was carried out by
• An early version of disease modeling was carried out by
• Compared two states: one with and one without the
• Presence of endemic smallpox
• Scalipox elimination Daniel Bernoulli in 1766 **•** Compared two states: one with an analyton of disease modeling was carried out by

Daniel Bernoulli in 1766

• Compared two states: one with and one without the

presence of enderinc smallpox

– Smallpox elimination str – Bernoulli Smallpox Model

Mearly version of disease modeling was carried out by

Daniel Bernoulli in 1766

Compared two states: one with and one without the

presence of endemic smallpox

— Smallpox elimination strategy: **Example 12**
 Example 12
 Example 12
 Example 12
 Example 12
 **Compared two states: one with and one without the

presence of endemic smallpox

— Smallpox elimination stategy: universal smallpox

— smallpox elimina**
- presence of endemic smallpox
	- vaccination at birth
- which was calculated by use of derivatives

4

Mechanism of Prediction

-
- mortality over time
- Bernoulli Smallpox Model
• An early version of disease modeling was carried out by

Daniel Bernoulli in 1766
• Compared we states: none with and one without the

presence of endentic smallpox
• Sackination at bith
• Sa Franchiese means and the state of disconsistered in the analytic state of the discontinue of the compared two states: one with and one without the vaccinated constrained constrained constrained constrained constrained cons Exernoulli Smallpox Model

In early version of disease modeling was carried out by

Dompared two states: one with and one without the

resernce of endenic smallpox

—Smallpox elimination strategy: universal smallpox

—Smal once smallpox is eradicated (i.e., all individual vaccinated) The Beroulli in 1766

Incompared two states: one with and one without the

resence of endemic smallpox

— Survival contenting into strategy universal smallpox

The Contenting into account right and the strategy universal s
	- vaccination

 $5₅$

Bernoulli Assumptions

- with a probability p and survive with a probability 1 − p;
- **•** Individuals infected with smallpox in the probability of the production of the first time discussion in Survival curve that describes population motality
once smallpox is eradicated (i.e., all individual
vaccinated)
-**•** Remouli model depended on 3 projections:

• Survival curve that describes (current) population

mortality over time describes (current) population

— Survival curve that describes population mortality

wacchiated)

• each year. In an infinitesimal interval of time dx, the probability of being infected between age x and age x + dx (with $dx = 1$ for the sake of simplicity) is qdx. – Survival curve that describes (current) population

– Survival curve that describes population mortality

– Survival curve taking into account risk of dying from

– Survival curve taking into account risk of dying fro
- remainder of their lives.

Bernoulli Results

- **Bernoulli Results
• Life expectancy with smallpox ≈ 26.57 years
• Life expectancy with smallpox ≈ 29.65 years
• Net Gain: 3.08 years** Bernoulli Results
• Life expectancy with smallpox \approx 26.57 years
• Life expectancy with smallpox \approx 29.65 years
• Net Gain: 3.08 years Bernoulli Results
• Life expectancy with smallpox \approx 26.57 years
• Life expectancy with smallpox \approx 29.65 years
• Net Gain: 3.08 years
-
-

7

Including Both Susceptible and Infected Populations

-
- action to explain epidemic behavior
- Life expectancy with smallpox ≈ 26.57 years
• Life expectancy with smallpox ≈ 29.65 years
• Net Gain: 3.08 years
• Net Gain: 3.08 years
• Net Gain: 3.08 years
• In 1908 Brownlee pointed out need to incorporate both
• I **Bernoulli Results**
Life expectancy with smallpox = 26.57 years
Life expectancy with smallpox = 29.65 years
Net Gain: 3.08 years
Net Gain: 3.09 years

the figure in epidemic model in epidemic modeling
that in 1908 Brownle • Life expectancy with smallpox = 26.57 years
• Life expectancy with smallpox = 29.65 years
• Net Gain: 3.08 years
• Net Gain: 3.09 years
• Net Gain: 3.09 years
• Maximum of the Supplied law of mass
• In 1908 Brownike poin The expectancy with smallpox = 26.57 years

offer expectancy with smallpox = 29.65 years

tet Gain: 3.08 years

tet Gain: 3.08 years

of the mass action of a complete of a complete of a complete of a complete of a

complet chemical reaction is directly proportional to product of activities or concentrations of reactants. Gain: 3.08 years
 Figure 1998
 Figure 1998
 Figure 1998
 Example 1998
 Example 2 reactable and Infected Populations
 Example 2 reactants

(1910) and Hamer (1928) applied law of mass

(1910) and Hamer (1928) app Frame Control of Comparison and the model of comparison and the comparison of the model of comparison of compa
	- of reaction
- disease in mathematical epidemiology

8 and 2010 and 2010

Compartmental Models

- moluding Both Susceptible and Infected Populations

 In 1908 Brownlee pointed out need to incorporate toth

host propulation and susceptibles in epidemic modeling

 Rosts (1910) and Hamer (1928) applied law of mass

acti infected (I), and recovered (immune/dead) (R) (SIR models) From 1908 Brownle pointed out meet to incorporate both the bosophrate both in the size (1910) and Hamer (1928) applied law of mass

action to explain eightening the eighted law of mass

action to explain eighted in the sta
- systems and provide useful outcomes in many circumstances when Mass Action Principle applies

Beyond Compartment Models

- Molecules in ideal solution, i.e., subjects of law of mass
action, are considered to mix homogeneously
- not to the contract of the con
- Molecules in ideal solution, i.e., subjects of law of mass
• Molecules in ideal solution, i.e., subjects of law of mass
• Human and animal populations generally are considered
• twhen nonhomogeneous mixing is great enou • Molecules in ideal solution, i.e., subjects of Maximal populations in ideals solution, are considered to mix homogeneously
• Human and animal populations generally are considered not to
• Human and animal populations g Beyond Compartment Models

• Molecules in ideal solution, i.e., subjects of law of mass

action, are considered to mix homogeneously

• Human and animal populations generally are considered

• When nonhomogeneous mixing is • When nonhomogeneous mixing is great enough, predictions from SIR model may be invalid From the and solution, i.e., subjects of law of mass

Alohecules in Ideal solution, i.e., subjects of law of mass

Cicion, are considered to mix homogeneously

Human and animal populations generally are considered

When no
- sophisticated" models may be useful

10

11

Static vs Dynamic Epidemic Models

- time) unrelated to proportion susceptible (e.g., risk/force remains constant whether there are 80% susceptible or 10% susceptible).
- on proportion of susceptible (e.g., herd immunity, in which risk/force decreases as number of susceptible diminishes)

Deterministic Vs Stochastic Epidemic Models

- subgroups (or compartments)
- **Deterministic Vs Stochastic Epidemic Models**
• Deterministic models: individuals assigned to different
• subgroups (or compartments)
• Transition rates from one class to another are
• mathematically expressed as derivati **• Deterministic Vs Stochastic Epidemic Models**

• Deterministic models: individuals assigned to different

• subgroups (or compartments)

• Transition rates from one class to another are

mathematically expressed as deri mathematically expressed as derivatives Deterministic Vs Stochastic Epidemic Models

Deterministic models: individuals assigned to different

ubgroups (or compartments)

ransition rates from one class to another are

anathematically expreseded as derivatives

–
- - differentiable with respect to time
	- deterministic
- **Deterministic Vs Stochastic Epidemic Models**

 Deterministic models: individuals assigned to different

subgroups (or compartments)

 Transition rates from one class to another are

 Transition rates from one class to Deterministic Vs Stochastic Epidemic Models

beterministic models: individuals assigned to different

bubgroups (or compartments)

Transition rates from one class to another are

anathermatically expressed as derivatives
 Deterministic Vs Stochastic Epidemic Models

Deterministic models: individuals assigned to different

Individuals (or compartments)

Transition rates from one class to another are

anathematically expressed as derivatives
 \rightarrow Changes in population of a compartment can be calculated using only history used to develop model

13

Deterministic Vs Stochastic Epidemic Models

• Deterministic models: individuals assigned to different

• Transform one class to another are

• Transform one class to another are

• I.e., mode formulated using different possible, but more complicated for (closed-form?) analysis **Deterministic Vs Stochastic Epidemic Models (2)**
• Stochastic: chance variation. Compartmental models
possible, but more complicated for (closed-form?)

analysis
 Example of a constant age and Constant age and Same numbe Deterministic Vs Stochastic Epidemic Models (2)

• Stochastic: chance variation. Compartmental models

possible, but more complicated for (closed-form?)

analysis

• The comparison of contacts are made between

• Homogeneo

14

Common Epidemic Model Assumptions

- same number of people at every age
- everyone at random (makes math tractable)
- Stochastic: chance variation. Compartmental models

Sossible, but more complicated for (closed-form?)

analysis

Common Epidemic Model Assumptions

Cataronary age distribution: all live to a constant age and

character of evidence that "disease spreading is largely affected by heterogeneity of contact network of population."
	- transmission for airborne disease (not STDs)
	- Figure 1
 Example 1998
 Example 1999
 Exa FIRENT COMMON SOLUTION CONTROL mixing can produce reliable predictions for both households and heterogeneous contact networks

(Basic) Reproduction Number

- measure of how transferable a disease is
- (Basic) Reproduction Number
• Basic reproduction number (R0, or R naught): A
• measure of how transferable a disease is
• Equals average number of people that a single infected
(infectious) person will infect over the cou **France Condition (Basic) Reproduction Number**
• Basic reproduction number (R0, or R naught): A
measure of how transferable a disease is
• Equals average number of people that a single infected (infectious) person will inf (infectious) person will infect over the course of their infection (assuming a fully susceptible population) (Basic) Reproduction Number
• Basic reproduction number (R0, or R naught): A
• measure of how transferable a disease is
• Equals average number of people that a single infected
(infectious) person will infect over the cou **Example 1.1** (Basic) Reproduction Number

• Basic reproduction number (R0, or R naught): A
 Figuals average number of people that a single infected

• (Infectious) person will infect over the course of their

interd **FROM CONSTRANT (BASIC PROPORTED ACCO** (BR) A measure of how transfersable a disease is
 Encyclopediated (Infectious) person will infect over the course of their

(Infectious) person will infect over the course of their
-

16

Implications of R0 for Epidemic Dynamics

- than one other person so disease will spread
- person on average so disease will die out
- person, so disease will become endemic
	- increase or decrease
- Basic reproduction number (R0, or R naught): A

requals average number of people that a single infected

(infections) person will infect over the course of their

infection (assuming a fully susceptible population)

 measure of now transferance a disease is
ciguals average number of people that a single infected
infectious person will inflect over the course of their moves of the
frection (assuming a fully susceptible population)
Can b (intercolous) person will infer the cover for course of the course of the computation

• Can be computed as a ratio of known rates over time

• Can be computed as a ratio of known rates over time

• If R0 > 1, then each pe changes R0 so that it is greater than 1, equal 1, or less than 1 **EXECT THE AND INTERT THE AND THE CONTROVER CONTROVER THE AND A THE AND A THE AND A THE AND THE PROSESS ON THE PROS** Implications of R0 for Epidemic Dynamics

• If R0 > 1, then each person so or average infects more

• H R0 < 1, then each person sinisates will die out

• H R0 < 1, then each person will melic axetly one other

• IF R0 =

17

Calculating Basic Reproduction Number

- time, and
- and
-
-
- If R0 > 1, then each person on average infects more

 If R0 < 1, then each person solisease will serve than one

person on average so disease will die out

 If R0 = 1, then each person will infect exactly one other

 • The of the reactive stationary interests in the analysis of the mean percent of the person on average so disease will spead

• If R0 <1, then each person so disease will infect exactly one other

• If R0 = 1, then each person on average so disease will die out
 μ IRO = 1, then each person, will infect exactly one other
 μ -i.e., will move throughout the population but not
 μ -i.e. also of the

changes R0 so that it is greater th number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This [finding]…can be simply explained by the (clustered) contact structure of the population."

β (Beta)

- $β$ (Beta)

 All susceptibles have an equal probability of contracting
 $θ$ (β controls how often a susceptible-infected contact

results in a new infection • All susceptibles have an equal probability of contracting disease $(β)$ β (Beta)

• All susceptibles have an equal probability of contracting

disease (β)

• β controls how often a susceptible-infected contact

results in a new infection
- \cdot β controls how often a susceptible-infected contact results in a new infection

19

β (Beta) (cont.)

- observe β. They instead suggest:
- All susceptibles have an equal probability of contracting
disease (β)
• β controls how often a susceptible-infected contact
results in a new infection
 $\overbrace{\begin{array}{c}\text{length}\end{array}}$
 $\overbrace{\begin{array}{c}\text{length}\end{array}}$
 $\overbrace{\begin{array}{c}\text{length}\end{array}}$
 \overbrace (Seta)

- Bissace (B)

Bissace (B)

bissace (B)

controls how often a susceptible-infected contact

esuits in a new infection

- (B)

- (Beta) (cont.)

- (B)

- (B)

- (D)

- (D)

- (D) (i.e., R0 or contact

- Define ra number (C) which represents number of close contact days times number of days infected; also equals number of close contacts per infected individual) and the control of the control of the control of the control o lisease (β)

Research representation

Scontistic in a new infection

Scottistic in a new infection
 β (Beta) (cont.)

They have a suggest:

They is the solution of give the sine of incition of the solution

Definition – β can then be calculated as R0 γ or cγ

(assets are calculated as R0 γ or cγ

(assets) and Moore suggests there is no direct way to

be calculated as a specific control of B to y as B⁺¹ γ(i.e., R0 or contact

days fi **• All infected individuals and the control of the metallic of the metallic of the base of the metallic of the metallic of the metallic of the metallic mumber of close contacts per infected individual) unrepresents relat** • Smith and Moore suggest there is no direct way to
 \sim Define ratio of β to yas β *1/γ (i.e., R0 or contract

– Define ratio of β to yas β *1/γ (i.e., R0 or contract

– number of class in smber of days infected indivi • Smith and Moore suggest there is no direct way to

observe β. They instead suggest:

The metal of β to γ as β * 1/γ (i.e., R0 or contact

mumber (C) which represents function of close contact

days times number of days – Define ratio of B to y as β⁺ 1/(i.e., Rio r. ontical

dumpler (C) which represents number of close contact

ration-by discussion equals

mumber of disce increases treative contagions are applied to the receiver of th
	- disease, can be estimated after an epidemic has run its course
	-

20

Gamma (γ)

- recovering from disease (γ)
- recovers and moves into the resistant phase
- time period can be estimated from observation of infected individuals
	- of days an individual is sick enough to infect others.

-
-
- SIR Epidemic Model (Kermack and McKendrick, 1927)

 One of simplest compartmental models

 "Reasonably predictive" for human to human

transmission where recovery confers lasting resistance

 Assumes:

 Every suscepti \overline{R} Epidemic Model (Kermack and McKendrick, 1927)

• One of simplest compartmental models

• TReasonably predictive" for human to human

• transmission where recovery confers lasting resistance

• Assumes:

– Every transmission where recovery confers lasting resistance
	-
	-
	- R Epidemic Model (Kermack and McKendrick, 1927)

	 One of simplest compartmental models

	 "Reasonably predictive" for human to human

	transmission where recovery confers lasting resistance

	 Assumes:

	 Every susceptibl R Epidemic Model (Kermack and McKendrick, 1927)

	• One of simplest compartmental models

	• "Reasonably predictive" for human to human

	transmission where recovery confers lasting resistance

	• Assumes:

	– Every interded h Epidemic Model (Kermack and McKendrick, 1927)

	The of simplest compartmental models

	Reasonably predictive" for human to human

	mansmission where recovery confers lasting resistance

	Susumes:

	– Every susceptible has equa Epidemic Model (Kermack and McKendrick, 1927)

	Dhe of simplest compartmental models

	Reassanaby predictive' for human to human

	masmission where recovery confers lasting resistance

	susumes:

	— Every infected has equal pr Epidemic Model (Kermack and McKendrick, 1927)

	The of simplest compartmental models

	Reasonably predictive" for human to human

	rate much faster than the much faster than the scale

	Every susceptible has equal probability of births and deaths, so latter are ignored

SIR Epidemic Model (2)

- incore is expected to the model (Kermack and McKendrick, 1927)

 One of simplest compartmental models

 Reasonably predictive" for human to human

tharsmission where recovery confires lasting resistance

 Assumes:

− Epidemic Model (Kermack and McKendrick, 1927)

One of simplest compartmental models

Transmission where recovery confers lasting resistance

assumes:
 $-$ Every issuesphile thas equal probability of incercion (6)
 $-$ Ever ordinary differential equations and have an "analytic solution in implicit form" From motor (vector) contracts are motocolarized to the different and the Reasonably predictive" for human to human

sesumes:

Sesume • SIR Epidemic Model (2)

• One distinction between this class of models and models

we build in treeque is that they are expressed by a set of

solution in implicit form

– More recently an exact analytical solution has – SIR Epidemic Model (2)

Dhe distinction between this class of models and models

we build in treage is that they are expressed by a set of

colution in implicit form

– More recently an exact analytical solution has be distinction between this class of models and models
will in treeqge is that they are represeded by a set of
non in implicit form^{*}
for the implicit form^{*}
for the implicit form^{*}
for the exertly an exact analytical solu
	- proposed.

23

SIR Model Fluctuations

-
- individuals falls rapidly as more of them are infected and thus enter the infected and recovered compartments iid in treeage is that they are expressed by a set of
in in implicit form"
on in implicit form"
referencing an exact analytical solution has been
posed.

SIR Model Fluctuations
these swith time
the set of the set of the s solution in implication

– More recently an exact analytical solution has been

proposed.

• Fluctuates with time

– During an epidemic, the number of susceptible

and thus eitste fielded and recovered

and thus eitste fi – More recently an exact analytical solution has been
proposed.

SIR Model Fluctuations

Cluctuates with time

dividuates from the number of susceptible

and/visuates falls rapidly as more of them are infected

compartme
	- offspring being born into susceptible compartment.
- - susceptible to infected to recovered

Susceptible, Infected, and Recovered

-
- capable of spreading the disease at time t
-
- Susceptible, Infected, and Recovered
• Susceptible S(t), number not yet infected at time t
• Infected (t), number who have been infected and are
• Capable of spreading the disease at time t
• Recovered R(t), number immuni Susceptible, Infected, and Recovered
• Susceptible S(t), number not yet infected at time t
• Infected I(t), number who have been infected and are
• Recovered R(t), number immunized or dead at time t
• Recovered R(t), numb Susceptible, Infected, and Recovered
• Susceptible S(t), number not yet infected at time t
• Infected (t), number who have been infected and are
• Recovered R(t), number immunized or dead at time t
• Recovered R(t), numbe Susceptible, Infected, and Recovered
• Susceptible S(t), number not yet infected at time t
• Infected I(t), number who have been infected and are
capable of spreading the disease at time t
• Recovered R(t), number immuniz etc.) Susceptible, Infected, and Recovered

Susceptible S(1), number not yet infected at time t

Infected I(1), number who have been infected and are

represented R(1), number immunized or dead at time t

represented R(1), numb Susceptible, Infected, and Recovered

Susceptible S(t), number not yet infected at time t

infected (t(), number who have been infected and are

apoible of spreading the disease at time t

decovered R(t), number immunized
	-
	-

25 and 26 an

SIR "Transition" Rates

-
- Susceptible, Infected, and Recovered

 Susceptible S(t), number not yet infected at time t

 Infected (I(), number who have been infected and are

 Recovered R(t), number immunized or dead at time t

 Recovered R(t), Susceptible, Infected, and Recovered

susceptible S(t), number not yet infected at time t

reflected (t), number how have been infected and are

reacovered R(t), number immunized or dead at time t

tary point in time, S(t susceptible; I = number of proportion who are infected; β is how often a susceptible-infected contact results in a new infection; and $N =$ the total number in the sample (or for proportions, 1) • Infected (t), number who have been infected and are

• Recovered R(t), number immunized or dead at time t

• Recovered R(t), mumber immunized or dead at time t

• At any point in time, $S(t) + l(t) + R(t) = 1$ (or 100, or 1000, spable of spreading the disease at time t

Recovered R(t), number immunized or dead at time t

tany point in time, S(t) + l(t) + R(t) = 1 (or 100, or 1000,

-1 if vorking with probabilities

-1 00 or 1000 if we assume a p • Typical with probabilities

• Typical with probabilities

– 1 if working with probabilities

– 100 or 1000 if we assume a population of 100 or 1000

– 100 or 1000 if we assume a population of 100 or 1000

– Where S =
- - then $γ = 1/D$, since an individual experiences one recovery in D units of time
- individuals in "states" are random variables with exponential distribution, although more realistic distributions can be used

Extensions of SIR models

- Extensions of SIR models
• SIRD model: Susceptible-Infected-Recovered-Deceased
(sitispulsines between recovered and now immune vs
• MSIR model: Begin immune (e.g., infants) and then
• become susceptible
• SIS: No immunity (distinguishes between recovered and now immune vs deceased) Extensions of SIR models
• SIRD model: Susceptible-Infected-Recovered-Deceased
(distinguishes between recovered and now immune vs
• MSIR model: Begin immune (e.g., infants) and then
• SIS: No immunity (cycle between suscep Extensions of SIR models
• SIRD model: Susceptible-Infected-Recovered-Deceased

(elistinguishes between recovered and now immune vs

deceased)

• MSIR model: Begin immune (e.g., infants) and then

become susceptible

• SIR Extensions of SIR models

• SIRD model: Susceptible-Infected-Recovered-Deceased

(distinguishes between recovered and now immune vs

• MSIR model: Begin immune (e.g., infants) and then

• SIS: No immunity (cycle between su Extensions of SIR models
• SIRD model: Susceptible-Infected-Recovered-Deceased
• disclanged)
• Cleased)
• MSIR model: Begin immune (e.g., infants) and then
• SIS: No immunity (cycle between susceptible and
• infectious)
• Extensions of SIR models
• SIRD model: Susceptible-Infected-Recovered-Deceased

(distinguishes between recovered and row immune vs

deceased
• MSIR model: Begin immune (e.g., infants) and then
• SIRS: No immunity (cycle be
- become susceptible
- infectious)
-
- (E) but not infectious (I)
- Recovered (R)

Three US Covid-19 Models

(Relies heavily on / steals from) Wong J. Pandemic surge models in time of severe acute respiratory syndrome coronaviras-2: Wrong or useful? Ann Intern Med. 16 April 2020 Three US Covid-19 Models

(Relies heavily on / steals from)

Wong J. Pandemic surge models in time of

severe acute respiratory syndrome

coronaviras-2: Wrong or useful? Ann

Intern Med. 16 April 2020

The Models

The Mode Finree US Covid-19 Models

(Relies heavily on / steals from)

Wong J. Pandemic surge models in time of

severe acute respiratory syndrome

coronaviras-2: Wrong or useful? Ann

Intern Med. 16 April 2020

The Models

The Mo Three US Covid-19 Models

(Relies heavily on / steals from)

Wong J. Pandemic surge models in time of

severe acute respiratory syndrome

coronaviras-2: Wrong or useful? Ann

Intern Med. 16 April 2020

The Models

The Mode

35

The Models

- COVID-19 hospital forecasting project at the University of Washington
- Impact Model for Epidemics (CHIME)
- (CAIC-RT)

Fit for Purpose

-
- capabilities

DIFFER IN METHODOLOGICAL APPROACH AND DEGREE TO WHICH PROJECTIONS CAN BE CUSTOMIZED TO LOCAL CONTEXT

38

IHME COVID-19 hospital forecasting project

Preprint of paper:

http://www.healthdata.org/sites/default/files/fi les/Projects/COVID/RA_COVIDforecasting-USA-EEA_042120.pdf

Mortality Prediction

-
- Mortality Prediction
• Entire model derives from mortality prediction
• Uses observed mortality curves in cities that have
• already reached their peak during the pandemic to
predict deaths in other areas that have not yet Mortality Prediction
• Entire model derives from mortality prediction
• Uses observed mortality curves in cities that have
aready reached their peak during the pandemic to
predict deaths in other areas that have not yet ha already reached their peak during the pandemic to predict deaths in other areas that have not yet had their peaks Mortality Prediction

Entire model derives from mortality prediction

Sless observed mortality curves in cities that have

lieady reached their peak during the pandemic to

redict deaths in other areas that have not yet ha Mortality Prediction

Entire model derives from mortality prediction

Sloss observed mortality curves in cities that have

breedict deaths in other areas that have not yet had their

mortality predictions initially based o **•** Mortality Prediction
• Lists observed mortality curves in cities that have
a ready readered their peak during the panalemic to
predict deaths in other areas that have not yet had their
peaks
— Mortality predictions ini
	- mortality in Wuhan City
	- France, and Korea (and more?)
- adjustments for timing of policy interventions) and incorporates infectious disease transmission

40

Predicting Mortality Peak

• Mortality Prediction
• Lists observed mortality prediction
• Uses observed mortality curves in cities that have
exact predict deaths in other areas that thave not yet had their
• peaks
• mortality predictions initially b of the daily death curve should either essentially reach or pass where the curve's tangent line is horizontal. We fit a spline to the natural log of the daily death rate and identify the peak where the slope of the spline is 0." Fredicting Mortality Peak
• When a given location reaches its peak, the natural log
of the daily death curve shuged either essentially reach or
single where the curve is target in the stratorial. We fit a
spine to the natu • Free dicting Mortality Peak
• When a given location reaches its peak, the natural log
of the daily death curve should either essentially reach or
pains to the natural log of the daily death rate and
identify the peak whe • "When a given location reaches its peak, the natural log
of the daily death curve shanged thin its horizontal. We fit a
spawhere the curve's tangent line is horizontal. We fit a
spine to the natural log of the daily deat

41

Epidemiologic Roots

- mid-1800s
- and found epidemics could be described as bell-shaped curves (approximate normal distributions)
- "[The curve] ascends first rapidly and then slowly, until at last it attains a maximum, makes a turn, and falls down more rapidly than it mounted" (i.e., asymmetric, but approximately normal)

have been thousands, grow to tens of thousands, for ____________________________ there is no reason why the same terrible law of increase which has prevailed hitherto should not prevail henceforth."

43

- - ratios (IFR)
-

Interventions

- interventions including 6 categories of social distancing measures
- enacted and people's behavioral response to these policies
- Other Covid-19 Outcomes

 Predicted Total Cases

 Derived using horelicled deaths and infection fatality

 Predicted Hospitalizations

 Predicted interprediction-to-death ratios, from

 which it predicts intensive ca - Derived using predicted deaths and infection fatality

Predicted Hospitalizations

- Derived using hospitalization-to-death ratios, from

which it predicts intensive care unit (CU) and

mechanical ventilator use

 As 20, and a time-dependent weighting of these predictions) to incorporate these effects

47

The University of Pennsylvania's COVID-19 Hospital Impact Model for Epidemics (CHIME) measures

The conclusion are fluctuated and people's between the conclusion and people's between the concept and people's between the concept and people and people and people and people and concept and concept and concept

informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Ann Intern Med. 2020. [PMID: 32259197] doi:10.7326/M20-1260

CHIME Model

-
-
- CHIME Model
• Dynamic transmission or mechanistic model
• Simplifies SIR disease inputs into:
— Regional population at risk, where the number
— infected depends on the regional population size
— Hospital market share
— Aca CHIME Model

• Dynamic transmission or mechanistic model

• Simplifies SIR disease inputs into:

– Regional population at isk, where the number

infected depends on the regional population size

– Hospitalized census

– Ma infected depends on the regional population size
	-
	-
- CHIME Model

Synamic transmission or mechanistic model

simplifies SIR disease inputs into:

 Regional population at risk, where the number

 Hospital market share

 Hospitalized census

 Hospitalized census

Susumes u CHIME Model

Synamic transmission or mechanistic model

simplifies SIR disease inputs into:

— Regional population at risk, where the number

infected depends on the regional population size

— Hospitalized census

— Mospi CHIME Model

Synamic transmission or mechanistic model

simplifies SIR disease inputs info:

— Regional population at risk, where the number

infected depends on the regional population size

— Hospitalized census

Hospita CHIME Model
• Dynamic transmission or mechanistic model
• Simplifies SIR disease inputs into:
• Regional population at risk, where the number
infected depends on the regional population size
– Hospitalized census
• Assumes infection risk, regardless of population density, contact location, or heterogeneity in infectivity

49

Other Assumptions/Inputs

- CHIME Model
• Simplifies SiR disease inputs into:
• Fregional population a risk, where the number
• Infected depends on the regional population size
• Hospitalized census
• Sasures uniform or homogeneous susceptibility t acute and ICU hospitalization and mechanical ventilation and the average length of stay (LOS) in hospital and ICU with or without a ventilator • Dynamic transmission or mechanistic model
• Simplifies SIR disease inputs into:
• Federoid population a risk, where the number
• Hospital ranked share
• Hospital ranked share
• Assumps uniform or homogeneous susceptibili • Can incorporation at new the the million of the million of the million of the Hospitalization size

• Hospitalization ents associated to the distinction size

• Assumes uniform or homogeneous susceptibility to

Incention
- for doubling time and recovery (infectiousness) in days with a constant mitigation reduction from social distancing at date of implementation
- accounting for such persons when estimating proportions of need for hospitalization, ICU care, and mechanical ventilation

50

COVID-19 Acute and Intensive Care Resource Tool (CAIC-RT)

actue and ICU Inospitalization and mechanical vertilistics

with o window a vertilistic structure that the control of the Cauditation Batter Cause of the maximum capacity of COVID-19 cases manageable per day given a health care system's constrained Calculate trassic reproductive mumber (80) from leading
the transition internal mediator in the control of the distinction of
the distinction of the distinction of multifications
can incorporate asymptomatic or multi finit of print].

CAIC-RT

- operations research
- CAIC-RT
• Hospital planning tool originating from models used in
• Seeks to maximize outputs given constraints and identify
• Seeks to maximize outputs given constraints and identify
• securces
• plances epidemic and focus CAIC-RT
• Hospital planning tool originating from models used in
operations research
• Seeks to maximize outputs given constraints and identify
resources
• Ignores epidemic and focuses on capacity imposed by
• resource lim queues and bottlenecks that may benefit from additional resources CAIC-RT

• Hospital planning tool originating from models used in

operations research

• Seeks to maximize outputs given constraints and identify

• queues and bottlenecks that may benefit from additional

• Ignores epide CAIC-RT

• Hospital planning tool originating from models used in

operations research

• Seeks to maximize outputs given constraints and identify

queues and bottlenecks that may benefit from additional

• resources lendl CAIC-RT

• Hospital planning tool originating from models used in

• Seeks to maximize outputs given constraints and identify

• queues and bottlenceks that may benefit from additional

• gnores epidemic and focuses on cap CAIC-RT

Mospital planning tool originating from models used in

Deperations research

Decises are both
chosets of maximize outputs given constraints and identify

resources

models with SARS–CoV-2

resource limitations

E
- resource limitations
- hospital resources on patient throughput

52

Model Flexibility

- - infection presenting to a health care system or hospital
	- critical care, and mechanical ventilation
- Hospital planning tool originating from models used in
Peeks to maximize outputs given constraints and identify
veluces and bottlenecks that may benefit from additional
resources
esources minarions
accomplement and focuses From Seeks to maximize outputs given constraints and identify

queues and obttlenecks that may benefit from additional

resources epiennic and focuses on capacity imposed by

resource similations

Examines steady-state sufficient resource capacity to care for all patients with SARS–CoV-2 infection esvolves

espacine initiations

engores epidemic and focuses on capacity imposed by

examines teady-state consequences of constrained

conspiral

Examines teady-state consequences of constrained

examined

Examines are a m
	- becomes necessary

Are the Models Good Enough?

- Frame the Models Good Enough?
• We've previously said strength of models depends on
strength of assumptions and strength of data
• No model is "right," but can be useful
• Don't KNOW the outcome of Covid pandemic
• But mod • We've previously said strength of models depends on strength of assumptions and strength of data Are the Models Good Enough?
• We've previously said stength of models depends on
stength of assumptions and stength of data
• No model is "right," but can be useful
• Don't KNOW the outcome of Covid pandemic
• But models m Are the Models Good Enough?
• We've previously said strength of models depends on
• No model is "right," but can be useful
• Don't KNOW the outcome of Covid pandemic
• But models might improve our guesses about the
• But m Are the Models Good Enough?
• We've previously said strength of models depends on
strength of assumptions and strength of data
• No model is "right," but can be useful
• Don't KNOW the outcome of Covid pandemic
• But model
-
-
- But models might improve our guesses about the policies we should adopt to address it

