## Sampling Uncertainty and Patient-Level Cost-Effectiveness Analysis

Statistical Considerations in Health Economic Evaluations

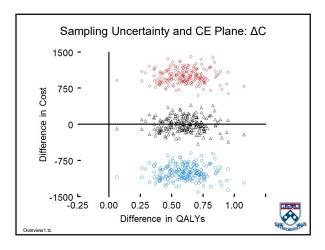
ISPOR 18th Annual International Meeting

May 19, 2013

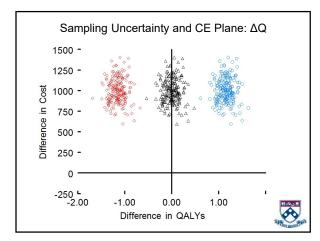
Henry Glick and Jalpa Doshi www.uphs.upenn.edu/dgimhsr



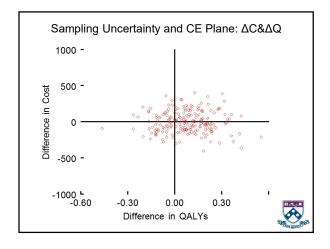
#### Good Value for Cost


- Common goal of economic analysis: identify when we can be confident that a therapy is good value compared to another
- Threat to confidence arises because economic result observed in an experiment may not truly reflect result in population
  - Single sample drawn from a population
- Referred to as sampling (or stochastic) uncertainty
- Methods for estimating sampling uncertainty for economic outcomes have much in common with methods used for clinical findings

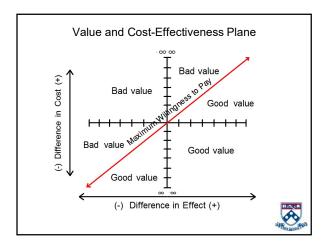



## Outline

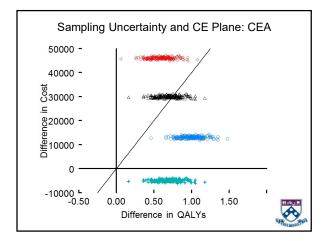
- Describe methods for identifying when we can and cannot be confident about a therapy's value
  - Acceptability curves
  - CI for NMB
  - CI for CER
- Goal is to demonstrate quantification and interpretation
   of sampling



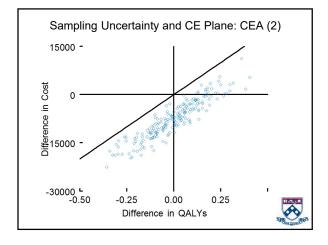


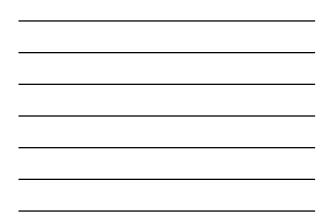



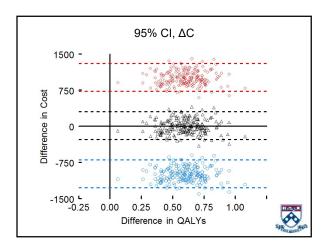


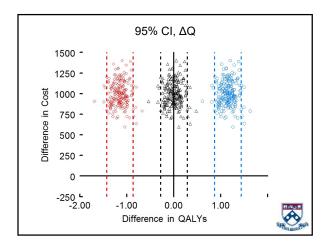


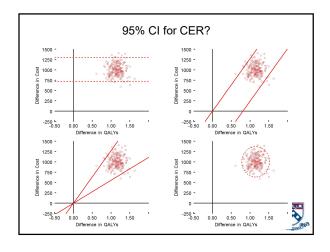







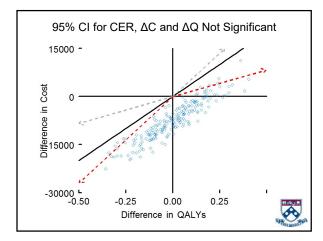





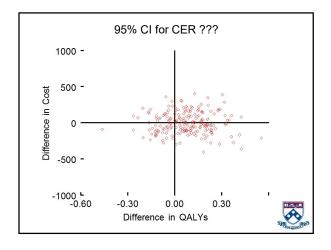




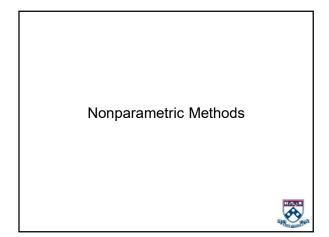






## CI Issues;

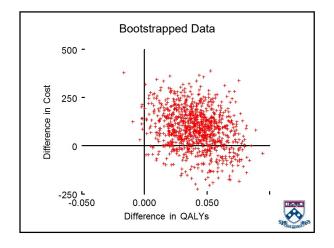
- # of methods available?
- What is the threshold, maximum willingness to pay?
   Differs across jurisdictions
  - Differs within jurisdictions
- Should we be 95% confident?



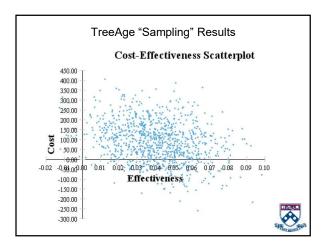










## Example #1

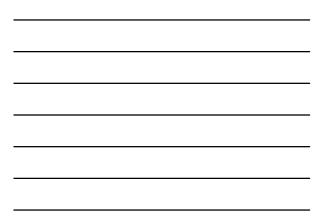
- Subsample (N=1000) of bootstrapped rchapter5.dta regression results from Jalpa's lecture
  - Cost, power 0.65, poisson
  - ΔC, mean = 88.09, SE = 103
  - QALYs, power 1.65, poisson
     ΔQ, mean = 0.0408, SE = 0.018
  - Correlation of difference, -0.2523
  - Incremental cost-effectiveness ratio: 2159





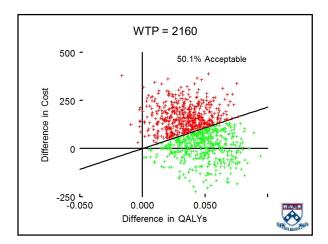




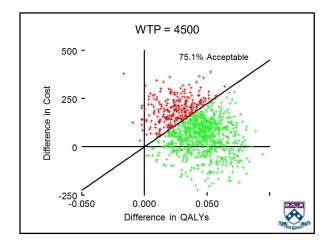



## Acceptability Curve

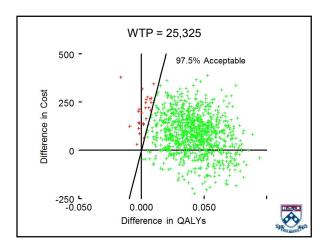
- Acceptability criterion defined on cost-effectiveness
   plane as a line through origin with slope equal WTP
- Proportion of distribution of difference in cost and effect falling below and to right of line is "acceptable" (i.e., has positive NMB)
  - Proportion acceptable for one therapy = 1-proportion acceptable for alternative therapy
    - In pairwise comparison, no additional information from plotting 2 lines, one for each therapy
- Proportion falling above and to left of line is
   "unacceptable"
  - Proportion unacceptable for one therapy = 1proportion unacceptable for alternative therapy



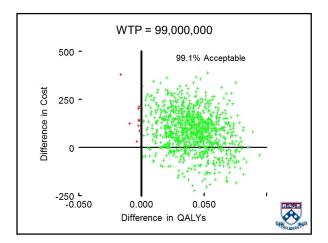


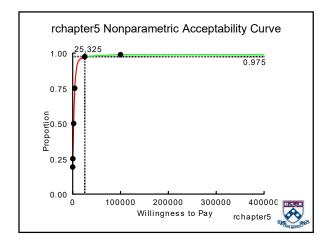



















#### 2-tailed Confidences Statements for Acceptability Curve

- If curve has a height that is ≤ 0.025th, 95% confident therapy is bad value
  - i.e., for current study, for most negative values of WTP (data not shown)
- If curve has a height that is ≥ 0.975%, 95% confident therapy is good value
  - i.e., for values of WTP <u>></u> 25,325
- If curve falls between 0.025 and 0.975, cannot be 95% confident that value of 2 therapies differs

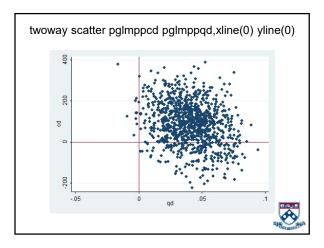
   i.e., for values of WTP > 0 and < 25,325</li>

#### Stata Programs

- Provide 4 Stata .do files that contain programs for calculating and plotting analyses of sampling uncertainty
- 2 calculate and plot nonparametric measures of sampling uncertainty (focused on today)
  - bsceaprogs
  - bsceagraphs
- 2 calculate and plot parametric measures of sampling uncertainty
  - iprogs
  - ceagraphs
- Running .do files (e.g., do bsceaprogs) loads programs; it does not calculate anything



## bsceaprogs.do


- Contains 5 programs related to sampling uncertainty for datasets that represent bootstrap replicates or repeated samples from second order Monte-Carlo analysis PLUS a help file (bsceaprogsdoc)
  - bsaccept1: Calculates % acceptable and p-value for a user-specified value of WTP
  - bsaccept: Calculates % acceptable and p-values for program-determined values of WTP
  - bsnmb1: Calculates NMB point estimate, CI, and pvalue for a user-specified value of WTP
  - bsnmb: Calculates NMB point estimates, CI, and p-values for program-determined values of WTP
  - bscicer: Calculates CI for CER



#### bsceagraphs.do

- Contains 3 programs that graph results of bsaccept, bsnmb, and bscicer PLUS a help file (bsceagraphsdoc)
  - bsaccgraph (works with bsaccept): Draws acceptability curve
  - bsnmbgraph (works with bsnmb): Draws NMB graph
  - bscicergraph (works with bscicer): Graphs bootstrap cloud as well as upper and lower limits of its CI (if defined)





## bsceaprogsdoc: bsaccept

- \* PROGRAM: BSACCEPT
- \* USES BOOTSTRAPPED DATA TO DEFINE
- \* NONPARAMETRIC ACCEPTABILITY CURVE
- \* COMMAND LINE: bsaccept [COST] [EFFECT]
- \* The 2 arguments are both names of variables
- \*\* [COST] = Name of difference in cost variable
- \*\* [EFFECT] = Name of difference in effect variable
- \* Saved Results
- \* r(accmat)



Run bsaccept for power/poisson Cost and QALYs

- . quietly do bsceaprogs
- . use dataforslides
- . bscicer pglmppcd pglmppqd



| bsaccept pgImppcd pgImppqd              |                                                     |                                                |
|-----------------------------------------|-----------------------------------------------------|------------------------------------------------|
| W                                       | % Accept                                            | P-value                                        |
| -3374<br>-2803<br>-2350<br>1805<br>2158 | 0.02200<br>0.02700<br>0.03900<br>0.44700<br>0.50100 | 0.0440<br>0.0540<br>0.0780<br>0.8940<br>0.9980 |
| 2533<br>20000<br>29723<br>30000         | 0.54600<br>0.97400<br>0.97600<br>0.97600            | 0.9080<br>0.0720<br>0.0480<br>0.0480<br>       |

|                          | Return List |
|--------------------------|-------------|
| . return list            |             |
| macros:<br>r(cmd) :      | "bsaccept"  |
| matrices:<br>r(accmat) : | 122 x 3     |
|                          |             |

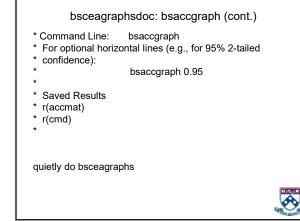
#### Return List (cont.)

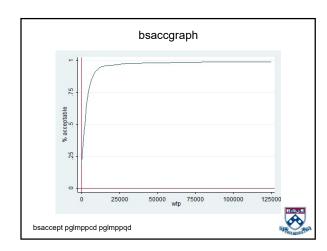
- To view r(accmat): matrix list r(accmat)
- To access data in r(accmat):
  - First, create a new matrix: matrix [name]=r(accmat)
  - Second, transform new matrix into a dataset (svmat [matrix name])
    - Results in 3 variables named [name]1, [name]2, and [name]3, where
      - –[name]1 = wtp
      - $-[name]^2 = \%$  acceptable
      - [name]3 = p-value



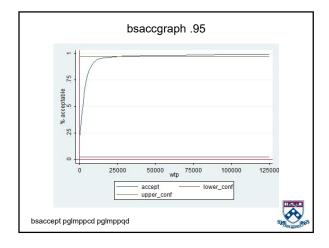
#### Saving Results of bsaccept

preserve drop\_all matrix accmat=r(accmat) svmat accmat ren accmat1 wtp ren accmat2 accept ren accmat3 pval save [FILENAME.DTA], replace restore





## bsceagraphsdoc: bsaccgraph

#### \* PROGRAM: bsaccgraph


- \* This program draws the acceptability curve. It is meant
- \* to be run directly after running the bsaccept program (or \* soon enough after that the r(accmat) return matrix is still
- soon enough after th
   resident in memory.
- . Soldone in mornory.
- \* As currently written, the program draws the curve for \* values of wtp between 0 and 125,000. To change the
- \* upper bound wtp in the graph, open the program file and
- \* revise the statement wtp<125000.
- \* The default setting draws the acceptability curve alone.
- \* Optionally, you can add horizontal confidence lines by
- \* specifying your desired confidence level (e.g., for 2-
- \* tailed 95% confidence, 0.95).













#### Saving the Graph

graph export [filename.extension],replace

e.g. graph export rc5acc.png,replace

Commonly used extensions include .png, .wmf, .pdf, .ps, and .tif



## Net Monetary Benefit

• Composite measure (part cost-effectiveness, part cost benefit analysis), usually expressed in dollar terms, derived by rearranging cost-effectiveness decision rule:  $W^* > \Delta C \ / \Delta Q$ 

where W\* = maximum acceptable cost-effectiveness ratio (e.g., 50,000 per QALY)

NMB routinely (but not necessarily) expressed on cost scale, known as net monetary benefits (NMB)

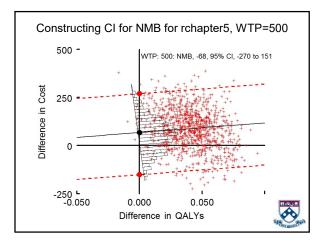
 $(\mathsf{W} \times \Delta \mathsf{Q}) - \Delta \mathsf{C}$ 

 Particularly important for statistical evaluation of costeffectiveness analysis (e.g., sample size; direct statistical testing by use of patient-level data; etc.)

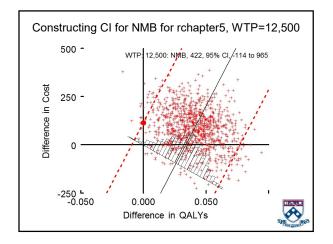


## Expected NMB

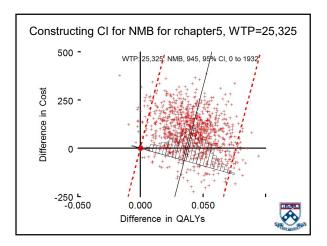
NMB =  $(W^*\Delta Q) - \Delta C$ 


- For a WTP of 50,000, NMB for rchapter5: (50,000 \* .0408) - 88 = 1952
- Study result is a difference in means of net benefits, not a ratio of means, and is always defined (i.e., no odd statistical properties like ratio) and continuous
- Unlike cost-effectiveness ratio, standard error of net benefits always defined
- Given not all decision making bodies have agreed upon maximum willingness to pay, routinely estimate net benefit over a range of policy relevant values of willingness to pay

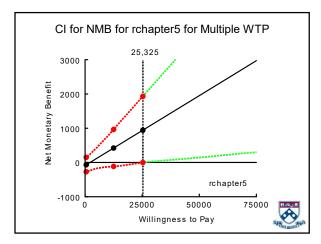



## Net Benefit Graphically

- Defined on cost effectiveness plane using a family of lines
- Slope of all lines equals W
- Each line represents a single value of NMB and equals
   –intercept
  - Because when  $\Delta Q{=}0,$   $W\Delta Q$  drops out of equation and left with  ${-}\Delta C$
- 95% CI for NMB defined by identifying 2 NMB lines that each omit 2.5% of distribution of difference in cost and effect













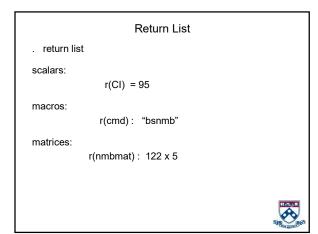





## Confidence Statements for CI for NMB

- If both confidence limits are negative, confident therapy
  is bad value
  - i.e., for current study, for most negative values of WTP (data not shown)
- If both confidence limits are positive, confident therapy is good value
  - i.e., for values of WTP  $\geq$  25,325
- If one confidence limit is positive and one is negative, can't be confident that value of therapies differs
  - i.e., for values of WTP > 0 and < 25,325




## bsceaprogsdoc: bsnmb

- \* PROGRAM: BSNMB
- \* USES BOOTSTRAPPED DATA TO DEFINE POINT
- \* ESTIMATES AND CI FOR NMB GRAPH
- \* COMMAND LINE: bsnmb [COST] [EFFECT] [CI]
- \* The 2 arguments are both names of variables
- \*\* `1' Name of difference in cost variable
- \*\* `2' Name of difference in effect variable
- \*\* `3' conidence interval, as decimal (e.g., 0.95 for 95%)
- \* Saved Results
- \* r(CI)
- \* r(nmbmat)



|                         | bsnmb p              | glmppcd p              | glmppqd .9           | 5                          |
|-------------------------|----------------------|------------------------|----------------------|----------------------------|
| W                       | NMB                  | 95 %<br>Lower<br>limit | -11-                 | P-value                    |
| -3374<br>-2803<br>-2350 | -226<br>-202<br>-184 | -423<br>-394<br>-372   | -12<br>2<br>20       | 0.0440<br>0.0540<br>0.0780 |
| 1805<br>2158<br>2533    | -13<br>-0<br>14      | -238<br>-230<br>-222   | 221<br>243<br>267    | 0.8940<br>0.9980<br>0.9080 |
| 20000<br>29723<br>30000 | 728<br>1125<br>1136  | -51<br>35<br>36        | 1531<br>2262<br>2282 | 0.0720<br>0.0480<br>0.0480 |







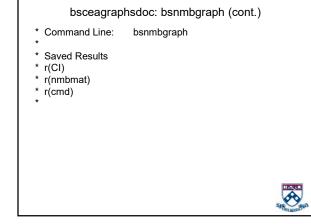
## Viewing and Accessing r(nmbmat)

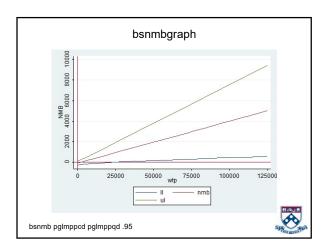
· Same as viewing and accessing r(accmat) - See prior slides for r(accmat)



## Saving Results of bsnmb

preserve drop \_all matrix nmbmat=r(nmbmat) svmat nmbmat ren nmbmat1 wtp ren nmbmat2 nmb ren nmbmat3 II ren nmbmat4 ul ren nmbmat5 p save [FILENAME.DTA], replace restore



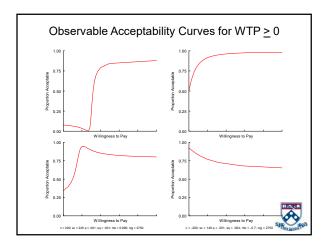


## bsceagraphsdoc: bsnmbgraph

#### \* PROGRAM: bsnmbgraph

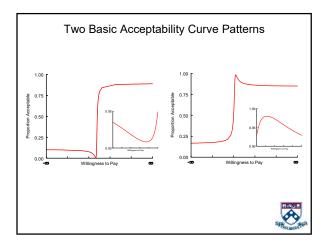
- \* This program draws the nmbgraph. It is meant to be
- \* run directly after running the bsnmb program (or soon \*
- enough after that the r(nmbmat) return matrix is still
- \* resident in memory.
- As currently written, the program draws the curve for
- \* values of wtp between 0 and 125,000. To change the \*
- upper bound wtp in the graph, open the program file and \* revise the statement wtp<125000.



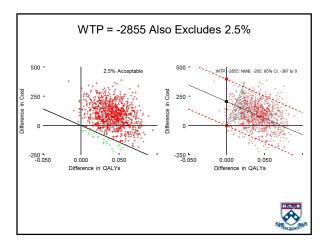




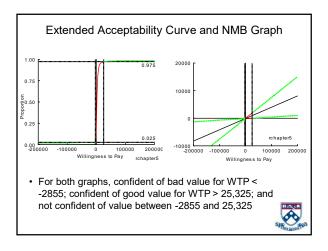

# Saving the Graph graph export [filename.extension],replace


e.g. graph export rc5nmb.png,replace

Commonly used extensions include .png, .wmf, .pdf, .ps, and .tif



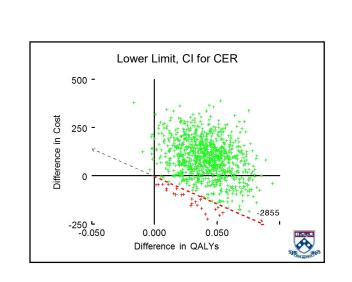


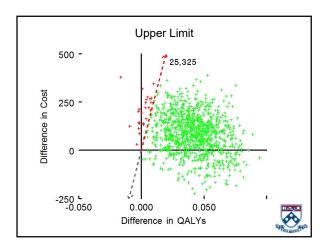




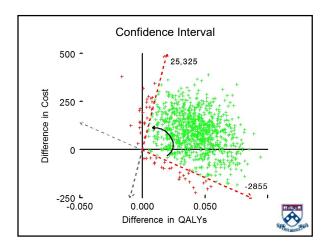


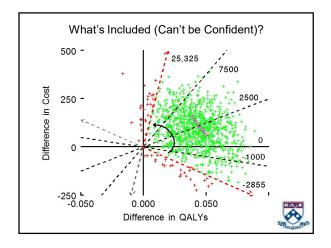



### Confidence Intervals for Cost-Effectiveness Ratios


- Common suggestion for constructing CI:
  - Order ratios from smallest to largest
  - Identify ICER of 2.5<sup>th</sup> percentile (e.g., 26<sup>th</sup> ordered observation out of 1000) and 97.5<sup>th</sup> percentile (e.g., 975<sup>th</sup> observation out of 1000)
- Technically, not an order statistic (although in many cases equivalent to one)
- Technically, lines through origin that exclude  $\alpha/2$  of joint distribution of difference in cost and effect
- Independent of whether lower limit is a larger or smaller number than upper limit, on cost-effectiveness plane, interval stretches counter-clockwise from lower (clockwise) limit to upper (counter-clockwise) limit






















#### Confidence Statements for CI for CER

- When (as in current experiment) lower limit is a smaller number than upper limit:
  - If lower limit is greater than WTP, confident therapy is bad value
  - i.e., for current study, for most values < -2855</li>
     If upper limit is less than WTP, confident therapy is good value
    - i.e., for values of WTP > 25,325
  - If WTP is greater than lower limit and less than upper limit, can't be confident that value of therapies differ
     i.e., for values of WTP > -2855 and < 25,325</li>



## bsceaprogsdoc: bscicer

- \* PROGRAM: BSCICER
- \* USES BOOTSTRAPPED DATA TO DEFINE
- \* NONPARAMETRIC PERCENTILE AND ACCEPTABILITY
- \* METHOD CI FOR CER
- \* COMMAND LINE: bscicer [COST] [EFFECT] [CI]
- $^{\ast}$  The 2 arguments are both names of variables; the 3rd is a
- \* number
- \*\* `1' Name of difference in cost variable
- \*\* `2' Name of difference in effect variable
- $^{\star\star}$  `3' confidence interval, as decimal (e.g., 0.95 for 95%)



| bscicer pglmppcd | pglmppqd .95 |
|------------------|--------------|
|------------------|--------------|

| Bootstrap percentile 95 % Confidence<br>Interval            |         |
|-------------------------------------------------------------|---------|
| Lower limit (quadrant): -2852                               | (4)     |
| Upper limit (quadrant): 25323                               | (1)     |
| Density omitted by:<br>Lower limit: 2.5<br>Upper limit: 2.5 |         |
| Fraction of density uniquely excluded: 5 %                  |         |
| Fraction of density excluded, wedge interpretation: 5 %     | (cont.) |
|                                                             |         |



| bscicer (cont.)                                                                                                                         |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Bootstrap acceptability 95 % Confi<br>Interval                                                                                          | ldence                  |
| Lower limit:                                                                                                                            | -2852                   |
| Upper limit:                                                                                                                            | 25323                   |
| Density omitted by:<br>Lower limit:<br>Upper limit:<br>Fraction of density<br>uniquely excluded:                                        | 2.5 %<br>2.5 %<br>4.6 % |
| Data for Immediate Form programs                                                                                                        |                         |
| Difference in costs:<br>SE, difference in costs:<br>Difference in effects:<br>SE, difference in effects:<br>Correlation of differences: | .04081035<br>.01801509  |

| Retu          | rn l | List         |  |
|---------------|------|--------------|--|
| . return list |      |              |  |
| scalars:      |      |              |  |
| r(bspll)      | =    | -2851.925396 |  |
| r(bspul)      | =    | 25322.526603 |  |
| r(bsall)      | =    | -2852        |  |
| r(bsaul)      | =    | 25323        |  |
| r(ci)         | =    | .95          |  |
| macros:       |      |              |  |
| r(cmd)        | :    | "bscicer"    |  |
| r(cost)       | :    | "pglmppcd"   |  |
| r(effect)     | :    | "pglmppqd"   |  |
|               |      |              |  |

I



## "Acceptability" vs "Percentile" CI

- · Acceptability CI for CER
  - Defined by identifying lines through origin that each exclude  $\alpha/2$  of joint distribution of difference in cost and effect
  - Can be shown to de dependably accurate
- Percentile CI for CER
  - Defined by use of non-naïve ordering of replicates (orders lexicographically by quadrant and by ratio)
    - Naïve ordering (most negative to most positive) fails in accuracy when replicates fall on both sides of y axis
    - Non-naïve ordering can fail in accuracy when replicates fall in 3 or all 4 quadrants of CE plane

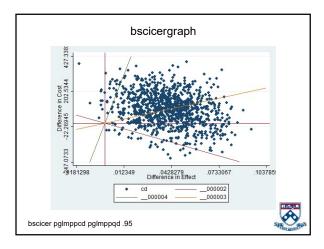


#### bsceagraphsdoc: bscicergraph

#### \* PROGRAM: bscicergraph

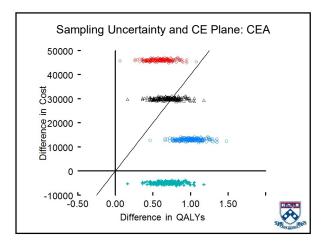
- \* This program graphs the bootstrap cloud as well as
- \* the upper and lower limits of its confidence interval
- \* on the cost-effectiveness plane. It is meant to be run
- \* directly after running the bscicer program (or soon
- \* enough after that the return list is still defined in

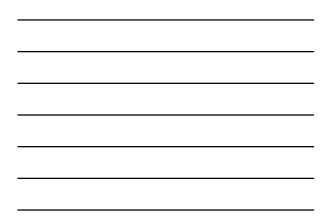
\* memory.

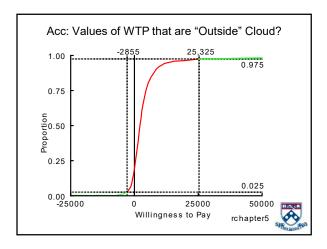

\* Command Line: bscicergraph



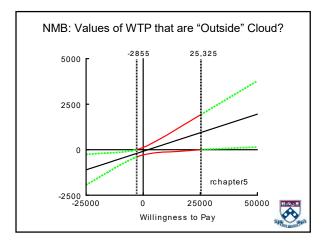
## bsceagraphsdoc: bscicergraph (cont.)


- \* Saved Results
- \*
- \* r(bspll) (percentile lower limit)
- \* r(bspul) (percentile upper limit)
- \* r(bsall) (acceptability lower limit)
  \* r(bsaul) (acceptability upper limit)
- \* r(Cl)
- \* r(cost)
- \* r(effect)
- \* r(cmd)
- \* `

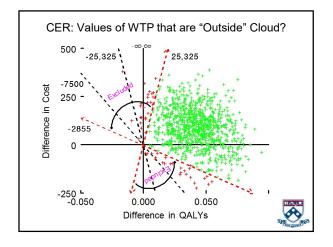






## Saving the Graph graph export [filename.extension],replace e.g. graph export rc5cicer.png,replace Commonly used extensions include .png, .wmf, .pdf, .ps, and .tif



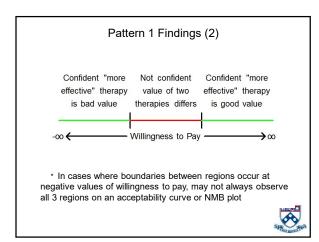




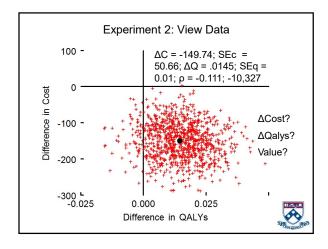




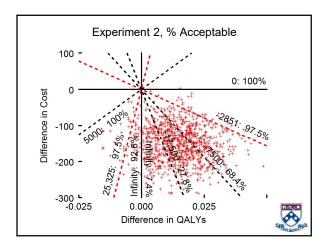


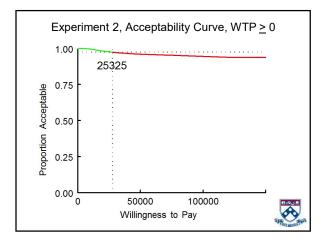




## "Pattern 1" Findings

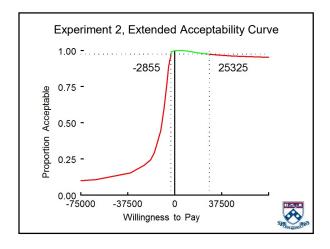
- Refer to findings like those in rchapter5 experiment as pattern 1 findings
- Occur when difference in effect is significant
- Know pattern 1 finding being observed when:
   Confidence interval for cost-effectiveness ratio excludes Y axis (i.e., LL < PE < UL)</li>
  - Both NMB confidence limits curves intersect x-axis (0) once
  - Acceptability curve intersects horizontal lines drawn at both 0.025 and 0.975



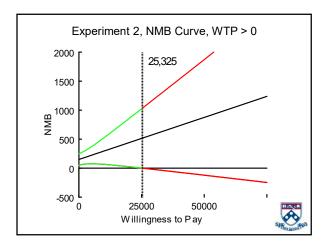


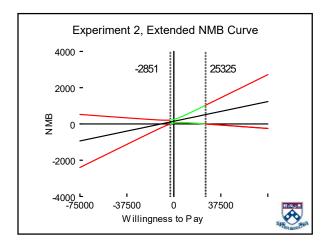


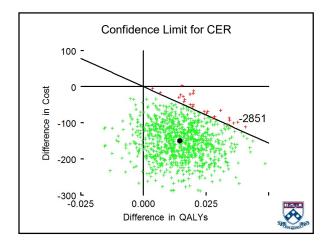


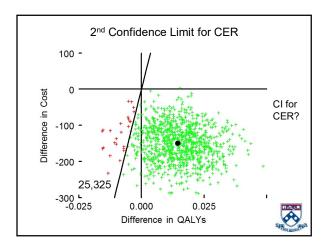


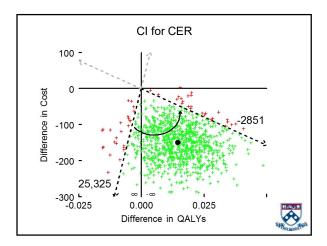


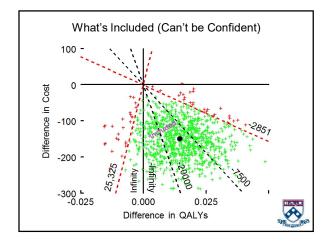


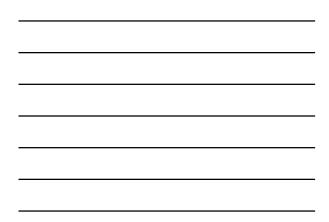



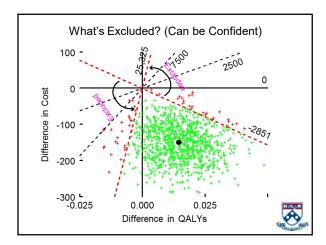

















#### Confidence Statements for CI for CER

- When lower limit is a larger number than upper limit Interval ranges between -∞ and upper limit and between lower limit and ∞
  - If WTP greater than upper limit and less than lower limit, can be confident that one of the therapies is good value
    - i.e., for current study, for values values of WTP  $\geq$  -2851 and  $\leq$  25,325
  - If WTP less than upper limit or greater than lower limit, can't be confident that value of therapies differ
    - i.e., for current study, for values of WTP < -2851 and > 25,325



When the Lower Limit is Larger than Upper Limit

- One of limits indicates that one therapy may be delivering more health at increased or decreased cost
- The other limit indicates alternative therapy may be delivering more health at increased or decreased cost
- Q is not statistically significant at the  $\alpha$  level represented by the interval
- · The interval thus includes y axis



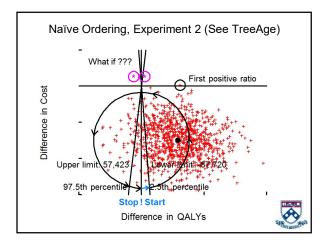
#### When Lower Limit is "Larger" than Upper Limit (2)

- Point estimate is either larger than both limits or smaller than both limits, but meets expectations for point
  - estimate and limit when both are on same side of Y axis - If point estimate and lower limit are on same side of Y axis, point estimate is larger than lower limit
    - Upper limit, which is on opposite side of y axis,  $\leq$  lower limit
  - If point estimate and upper limit are on same side of Y axis, upper limit larger than point estimate
    - Lower limit, which is on opposite side of y axis, ≥ upper limit

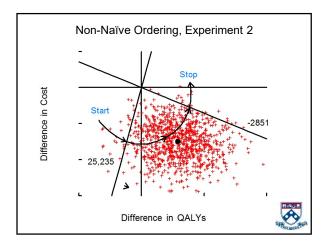


#### Common Mistakes, CI for CER (See TreeAge)

- CER equals ratio of mean differences in cost and effect
- Ratio of mean differences does not equal mean of ratios


   Can't use result of Stata sum command for ratios to derive point estimate
- "SD" generated by summing ratios is not a good measure of SE of ratio (which can be undefined)
- When all replicates on one side of y axis (e.g., all on right or all on left), ordering ratios and identifying 2.5<sup>th</sup> and 97.5<sup>th</sup> percentiles of replicates yields a dependably accurate CI for CER
  - Equivalent to identifying lines through origin that exclude 2.5% of distribution

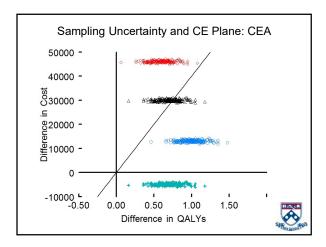



## Common Mistakes (2)

- When replicates fall on both sides of y axis and are in at most 3 quadrants, cannot simply order ratios from lowest to highest
  - In most, but not all cases, must instead order lexicographically counter clockwise by quadrant and by magnitude of ratios within each quadrant
  - Can also yield dependably accurate confidence interval
- When replicates fall in all 4 quadrants, ordering can fail
  - Identifying lines through origin that exclude 2.5% of distribution guarantees dependably accurate CI, while CI based on ordering does not



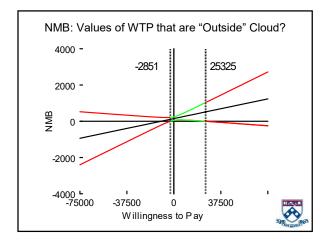




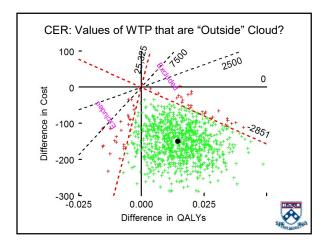





| Statistic   | Stata,<br>Naive | TreeAge,<br>Naive | Correct |
|-------------|-----------------|-------------------|---------|
| ICER:       | -13808          | -15090            | -10,327 |
| "SD" (SE)   | 75466           | 2,373,023         | ,<br>   |
| Lower limit | -87,720         | -90,162           | 25,325  |
| Upper limit | 57,423          | 63,616            | -2851   |
|             |                 |                   |         |



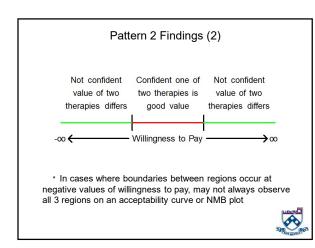


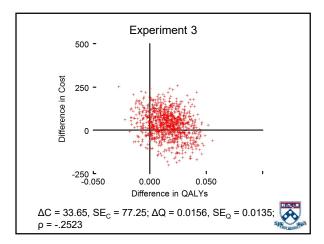




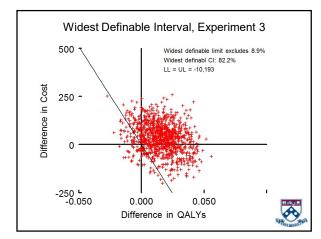


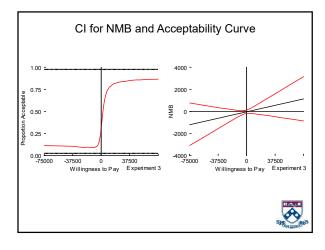



## Pattern 2 Findings


- Refer to findings like those in experiment 2 as pattern 2 findings
- 1 of 2 patterns that occur only when difference in effect is not significant
- Know pattern 2 is observed when:
  - Confidence interval for ICER includes Y axis (i.e., LL > UL > PE OR PE > LL > UL)
  - One NMB confidence limit curve intersects x-axis (0) twice; other limit never intersects x-axis
  - Acceptability curve intersects a horizontal line drawn at either 0.025 and 0.975 on Y axis twice and never intersects other line (e.g., intersects 0.975 twice and never intersects 0.025)



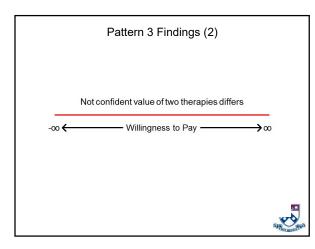


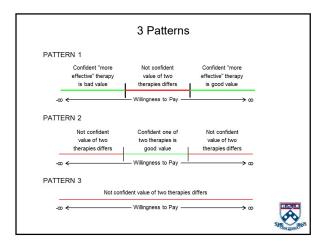









## Pattern 3 Findings

- Refer to findings like those in experiment 3 as pattern 3 findings
- 1 of 2 patterns that occur only when difference in effect is not significant
- Know pattern 3 is observed when:
  - Confidence interval for ICER is undefined
  - Neither NMB confidence limit curve intersects x-axis
     (0)
  - Acceptability curve never intersects horizontal lines drawn at either 0.025 or 0.975 on Y axis







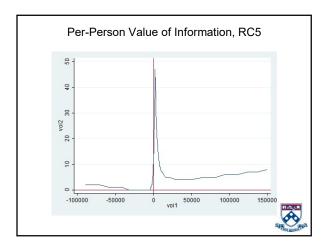


#### Conclusions (1)

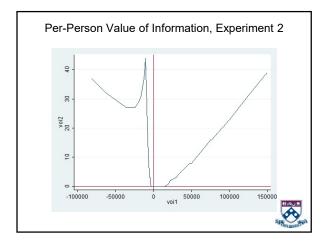
- For any given willingness to pay, an experiment **ALWAYS** allows us to draw one of three conclusions:
  - Can be confident therapy is good value compared to alternative
  - Can be confident alternative is good value compared to therapy
  - Cannot be confident value of 2 therapies differs



## Conclusions (2)


- If goal is to identify which of 3 conclusions holds for a given willingness to pay, confidence intervals for costeffectiveness ratios, confidence intervals for NMB, and acceptability curves ALWAYS provide the same answer
  - e.g., if fraction acceptable at our WTP falls between 0.025 and 0.975:
    - CI for NMB calculated by use of our WTP includes 0, and
    - WTP is included within the CI for CER




## Conclusions (3)

- CI for CER provide decision makers with concise information (i.e., 0, 1, or 2 numbers) that allows them to determine – based on own WTP -- if they can be confident about a therapy's value
- Acceptability curves allow decision makers to assess alternate levels of confidence if alternate levels are of interest

