Stratum-Specific Likelihood Ratios Henry Glick Epi 550 January 29, 2020

Outline

- Last lecture reviewed one categorical approach to interpreting continuous tests: identifying optimal 2x2 table
- Today address second categorical approach to interpreting continuous tests scores: development of stratum-specific likelihood ratios (SSLR)
- In what follows:
 - Describe construction of SSLR
 - Demonstrate calculation of post-test probabilities by use of SSLR (you already know how)
 - Describe relationship between SSLR and ROC curve
 - Discuss relationship between LR+ and LR- and ROC curve

• In 2 dat	2x2 appro ta into a se	2x2 / ach to contir eries of cum	Approact nuously so ulative 2x2	ר aled tests, 2 tables	aggregate
Cut-off	Children w/ Bacteremia	Children w/o Bacteremia	Cut-off	Children w/ Bacteremia	Children w/o Bacteremia
<u>></u> 25	6	26	<u>></u> 25	6	26
<u>></u> 20, <25	4	43	<u>></u> 20, <25	4	43
<u>></u> 15, <20	7	129	<u>></u> 15, <20	7	129
<u>></u> 10, <15	7	292	<u>></u> 10, <15	7	292
<u>≥</u> 0, <10	2	369	<u>≥</u> 0, <10	2	369
Cut-off	Children w/ Bacteremia	Children w/o Bacteremia	Cut-off	Children w/ Bacteremia	Children w/o Bacteremia
<u>></u> 25	6	26	<u>></u> 25	6	26
<u>></u> 20, <25	4	43	<u>></u> 20, <25	4	43
<u>></u> 15, <20	7	129	<u>></u> 15, <20	7	129
<u>></u> 10, <15	7	292	<u>></u> 10, <15	7	292 💷 🗠
>0 <10	2	369	>0. <10	2	369

SSLR Approach

- In SSLR approach, calculate likelihood ratios for particular test results or ranges of test results (i.e., strata) and never aggregate results of one stratum with those of another
- Strata can be large -- like five used to summarize WBC data or can be infinitesimally small
 - e.g., if we plot the distribution of positive test scores and the distribution of negative test scores, we can define likelihood ratios for every point on the two curves

Formula for LR_i

- SSLR: Fraction of diseased individuals with a test result (or a test result in a particular range) divided by fraction of nondiseased individuals with a test result (or a test result in same range)
- Generalization of formula for a likelihood ratio for test result, is as follows:

LR_i =

Probability of test result i given D+

Probability of test result i given D-

Three Methods for the Calculatint SSLR

- At least 4 methods for calculating SSLR
- · All 4 are transformations of one another
- Except for possible differences due to rounding, all 3 yield exact same results
- For all 4 methods, first step is to establish strata and tabulate stratum specific test results
 - Continue to illustrate the principles by use of data about white blood cell (WBC) counts for the diagnosis of bacteremia

Use same cs LR+/LR- and	i program v their 95% (ve used in lect Cl	ure 2 to ider	tify
Stratum	Bact (a)	No Bact (b)	SSLR	
<u>></u> 25	6	26		
<u>></u> 20, <2	54	43		
<u>></u> 15, <2	0 7	129		
<u>></u> 10, <1	57	292		
<u>></u> 0, <10	2	369		
Total	26 (e)	859 (f)		

Stata Command for LR _{≥25}								
csi 6 26 20 833 (csi $N_{TP} N_{FP} N_{FN} N_{TN}$)								
	Exposed	Unexp	Total					
Cases	6	26	32					
Noncases	20	833	853					
Total	26	859	885					
Risk	.2307692	.0302678	.0361582					
	Point Estimate 95% Conf. Interval							
Risk diff	.20050 ⁻	15	.0381476	.3628554				
Risk ratio	7.6242	6	3.434883	16.2766				
Attr frac ex	.86883	97	.7088692	.9409097				
Attr frac pop	.16290	75						
chi2(1) = 29.11 Pr>chi2 = 0.0000								
Exposed = D+; Cases = T+ Unexposed = D-; Noncases = T-								

tratum	Bact (a)	No Bact (b)	SSLR
<u>></u> 25	6	26	7.62426
<u>></u> 20, <25	4	43	
<u>></u> 15, <20	7	129	
<u>></u> 10, <15	7	292	
<u>></u> 0, <10	2	369	
Total	26 (e)	859 (f)	

Stata Command for CI for $LR_{\geq 20:<25}$							
csi 4 43 22	816						
	Exposed	Unexp	Total				
Cases	4	43	47				
Noncases	22	816	838				
Total	26	859	885				
Risk	.1538462	.0500582	.0531073				
	Point Est	imate	95% Con	f. Interval			
Risk diff	.10378	379	0356616	.2432375			
Risk ratio	3.0733	45	1.191737	7.925783			
Attr frac ex	.67462	217	.160889	.8738295			
Attr frac pop	.05741	46					
chi2(1) = 5.41 Pr>chi2 = 0.0201							
Exposed = D+; Cases = T+ Unexposed = D-; Noncases = T-							

Stratum	Bact (a)	No Bact (b)	SSLR
<u>></u> 25	6	26	7.62426
<u>></u> 20, <25	4	43	3.07335
<u>></u> 15, <20	7	129	1.79279
<u>></u> 10, <15	7	292	0.79202
<u>></u> 0, <10	2	369	0.17907
Total	26 (e)	859 (f)	

L

Method 2: (axf) / (bxe) * Use extension of the (axf) / (b*e) method we used to calculate LR+ / LR- 						
Stratum	Bact (a)	No Bact (b)	(a*f) / (b*e)			
<u>></u> 25	6	26				
<u>></u> 20, <25	4	43				
<u>></u> 15, <20	7	129				
<u>></u> 10, <15	7	292				
<u>></u> 0, <10	2	369				
Total	26 (e)	859 (f)				
* Same ca	Same calculations we used for slopes of ROC curve					

	Met	thod 2: (av	xf) / (bxe), LR _{≥25}	
Stratum	Bact	No Bact	(axf) / (bxe)	SSLR
<u>></u> 25	6	26	(6x859) / (26x26)	7.62426
<u>></u> 20, <25	4	43		
<u>></u> 15, <20	7	129		
<u>></u> 10, <15	7	292		
<u>></u> 0, <10	2	369		
Total	26	859		

	Meth	od 2: (axf)) / (bxe), LR _{>20, <25}	
Stratum	Bact	No Bact	(axf) / (bxe)	SSLR
<u>></u> 25	6	26	(6x859) / (26x26)	7.62426
<u>></u> 20, <25	4	43	(4x859) / (43x26)	3.07335
<u>></u> 15, <20	7	129		
<u>></u> 10, <15	7	292		
<u>></u> 0, <10	2	369		
Total	26	859		

Method 2: (axf) / (bxe)						
• All SS	LR					
Stratum	Bact	No Bact	(axf) / (bxe)	SSLR		
<u>></u> 25	6	26	(6x859) / (26x26)	7.62426		
<u>></u> 20, <25	4	43	(4x859) / (43x26)	3.07335		
<u>></u> 15, <20	7	129	(7x859) / (129x26)	1.79279		
<u>></u> 10, <15	7	292	(7x859) / (292x26)	0.79202		
<u>></u> 0, <10	2	369	(2x859) / (369x26)	0.17907		
Total	26	859				
* As previo	* As previously noted, SSLR = slopes of ROC curve					

Stratum	SSLR	95% CI
<u>></u> 25	7.6243	3.435 to 16.923
<u>></u> 20, <25	3.0733	1.192 to 7.926
<u>></u> 15, <20	1.7928	0.933 to 3.444
<u>></u> 10, <15	0.7920	0.418 to 1.502
<u>></u> 0, <10	0.1791	0.047 to 0.680

SSLR	Approach		2x2 Approa	ch *
Cut-off	SSLR	Cut-off	LR+	LR-
		All Neg		1
<u>></u> 25	7.6243	<u>></u> 25	7.6243	0.7932
<u>></u> 20,<25	3.0733	<u>></u> 20	4.7882	0.6690
<u>></u> 15,<20	1.7928	<u>></u> 15	2.8336	0.4498
<u>></u> 10,<15	0.7920	<u>></u> 10	1.6182	0.1791
<10	0.1791	All Pos	1	

 Complete results 	ute prop	Method 3 portion of pa	. Percentiles atients with disease with 5	
Stratum	Bact	No Bact	% Bact	
<u>></u> 25	6	26	0.23077	
<u>></u> 20, <25	4	43	0.15385	
<u>></u> 15, <20	7	129	0.26923	
<u>></u> 10, <15	7	292	0.26923	
<u>></u> 0, <10	2	369	0.07692	
Total	26	859	1.000	

 Complexity results 	Method 3. Percentiles Compute proportion of patients without disease with 5 results 				
Stratum	Bact	No Bact	% Bact	% No Bact	
<u>></u> 25	6	26	0.23077	0.03027	
<u>></u> 20, <25	4	43	0.15385	0.05006	
<u>></u> 15, <20	7	129	0.26923	0.15017	
<u>></u> 10, <15	7	292	0.26923	0.33993	
<u>></u> 0, <10	2	369	0.07692	0.42957	
Total	26	859	1.000	1.000	

 Step 4 withou 	Method 3. Percentiles Step 4. Divide the fractions with disease by the fractions without disease 					
Stratum	Bact	No Bact	% Bact	% No Bact	SSLR	
<u>></u> 25	6	26	0.23077	0.03027	7.6237 *	
<u>></u> 20, <25	4	43	0.15385	0.05006	3.0733	
<u>></u> 15, <20	7	129	0.26923	0.15017	1.7928	
<u>></u> 10, <15	7	292	0.26923	0.33993	0.7920	
<u>></u> 0, <10	2	369	0.07692	0.42957	0.1791	
Total	26	859	1.000	1.000		
* Difference	* Difference due to rounding					

Stratum	Sens	1-Spec	_
<u>></u> ∞	0	0	-
<u>></u> 25	0.23077	0.03027	
<u>></u> 20	0.38462	0.08033	
<u>></u> 15	0.65385	0.23050	
<u>></u> 10	0.92308	0.57043	
<u>></u> 0	1.00000	1.00000	_
			10.0

Stratum	Se _{j=i} - Se _{j=i-1}	1-Sp _{j=i} - 1-Sp _{j=i-1}	Slope
<u>></u> 25	0.23077 - 0.00000	/ 0.03027 - 0.00000	7.6237
<u>></u> 20, <25	0.38462 - 0.23077	/ 0.08033 - 0.03027	3.0733
<u>></u> 15, <20	0.65385 - 0.38462	/ 0.23050 - 0.08033	1.7928
<u>></u> 10, <15	0.92308 - 0.65385	/ 0.57043 - 0.23050	0.7920
<u>></u> 0, <10	1.00000 - 0.92308	/ 1.00000 - 0.57043	0.1791
* Difference	e due to rounding		

SSLR and Post-Test Probabilities

- SSLR greater than 1 indicate test result occurs more frequently when disease is present than when it is absent
- When considering 2 outcomes, SSLR>1 yield post-test
 probabilities greater than pre-test probabilities
 - All else equal, the larger the SSLR, the greater the shift between pre- and post-test probabilities

SSLR and Post-Test Probabilities (2)

- SSLR less than 1 indicate test result occurs less frequently when disease is present than when it is absent
- When considering 2 outcomes, SSLR<1 yield post-test probabilities less than pre-test probabilities
 - All else equal, the smaller the SSLR, the greater the shift between pre- and post-test probabilities
- SSLR that equal 1 yield post-test probabilities that equal pre-test probabilities (i.e., no information)

SSLR and the Calculation Of Post-test Probability Of Disease

- Of five methods we introduced to calculate post-test probability of disease, three used likelihood ratios:
 - Odds transformation method
 - Likelihood ratio and probability method
 - Nomogram
- Can use any of these three methods to calculate posttest probabilities by use of SSLR
- Below, use likelihood ratio and probability method

Pre-test probability * LR_i

(Pre-test probability * LR_i) + (1-Pre-test probability)

Post-Test Probabilities				
 If pre-te probabi 	st probability of bactere lities of bacteremia equa	mia of 10%, post-test al:		
. 05	0.1 * 7.6243	0.76243		
<u>></u> 25	(0.1 * 7.6243) + 0.9	= = 0.459		
>20 <25	0.1 * 3.0733	- 0.30733 - 0.355		
<u>-</u> 20, <25	(0.1 * 3.0733) + 0.9	1.20733 - 0.255		
>15 <20	0.1 * 1.7928	0.17928		
<u>></u> 15, <20	(0.1 * 1.7928) + 0.9	1.07928		
>10 <15	0.1 * 0.7929	0.07929		
<u>2</u> 10, <15	(0.1 * 0.7929) + 0.9	0.97929		
<10	0.1 * 0.1791	0.01791 - 0.0000		
~10	(0.1 * 0.1791) + 0.9	0.91791		

Can identify "positive" and "Negative" SSLR by comparing OOS and SSLR (which equal slopes of ROC curve)

Strata with SSLR < OOS represent "negative" SSLR; those with SSLR > OOS represent "positive" SSLR; those with SSLR = OOS represent either "positive" or "negative" SSLR

Implication

- Can determine stratum specific results that are "positive" by comparing OOS and SSLR
- Because optimal 2x2 table includes all positive strata (future proof), can identify optimal 2x2 table by making same comparison
- Does not mean SSLR fully replace sensitivity and specificity

SSLR "Throw Away" Information in 2x2 Table

- Can identify cut-off for positive test and "positive" SSLR without ROC curve
- But SSLR "throw away" other information contained in ROC curve that is useful for decisions such as choice between tests
- Suppose 2 tests have
 - Same number of strata
 - Same SSLR (0.1, 1, and 10)
 - All else (test cost,risk, delay, etc.) equal

Can 1 test be better than the other?

If so, are SSLR sufficient for determining which test is better?

- Suppose 2 tests have same number of strata
- But test 1's SSLR all more indicative of having or not having disease (i.e., "better") than test 2's SSLR

	SSLR			
Test result	Test 1	Test2		
High	10	4		
Medium	1.168	1		
Low	0.167	0.308		

- Is test 1 better than test 2?
- If so, do SSLR alone provide information we need to choose between tests?

Test with "Better" SSLR Not Necessarily Better Because...

- …Predictive ability depends on both:
 Magnitude of LR
 - Fraction of patients in whom LR will be used
- In example:
 - LR for test 1's "high" result (10) greater than LR for test 2's high result (4)
 - But test 1's high result occurs in only 15% (red sens) of patients with disease, while test 2's "high" result occurs in 60% (blue sens) of patient's with disease
- Difference in frequency means for some pretest probabilities use of test 2's high result (with smaller LR) more appropriate than use of test 1's high result

LR+ and LR- and ROC Curves

- There are also relationships between LR+, LR- and ROC curves
- LR+ equals sensitivity / (1-specificity)
- Points on the ROC curve equal sensitivity and 1specificity of each of the plotted 2x2 tables
- Thus slope of line drawn from the origin to any point on the ROC curve equals the LR+ for the 2x2 table that is represented by the point

LR+ and LR- and ROC Curves (2)

- Similarly, LR- equals (1-sensitivity) / specificity
- Change in sensitivity between the point on the ROC curve and the upper right corner of the ROC curve (1,1) equals 1-sensitivity
- Change in 1-specificity between the point on ROC curve and upper right corner of the ROC curve equals specificity
- Thus, slope of line between a point on the ROC curve and the upper right corner of ROC curve equals (1sensitivity) / specificity, or LR-

SSLR and ΔO_{D+} and ΔO_{D-}

- Does use of SSLR imply we needn't be concerned with ΔO_{D*} and $\Delta O_{D}.?$
 - Yes when we are calculating the post-test probability of disease
 - No when we are using test result to make a treatment decision

Summary

- Introduced stratum specific likelihood ratios, which are extensions of LR+ and LR- to multilevel/continuous test results
- · Demonstrated 3 methods for calculating SSLR
- Demonstrated 1 of 3 methods for using SSLR to calculate post-test probabilities of disease
 - Methods are generalizations of methods introduced in $2x2\ \mbox{module}$ when we described LR+ and LR-
- Also described relationship between SSLR and slopes of ROC curve, and indicated that comparison of optimal operating slope to SSLR, allows identification of optimal positive test cut-off for a particular patient or class of patients

Ventil	PIOPI lation-Perfusion	ED SSLR Exa (V/Q) scanning	ample *	
	Result	# W/Dis (a)	# W/O Dis (b)	
	High Prob	102	14	
	Intermed	105	217	
	Low Prob	39	273	
	Normal	5	126	
	Total	251 (e)	630 (f)	
* Jaesch	ke, JAMA, 1994;271:	703-7		

•			
•			
•			

Result	("A" x "F")	/	("B" x "E")	SSLR
High Prob				
Intermed				
Low Prob				
Normal				

Result	("A" x "F")	/	("B" x "E")	SSLR
High Prob	(102* x 630)	/		
Intermed	(105 x 630)	/		•
Low Prob	(39 * 630)	/		
Normal	(5 * 630)	/		

Result	("A" x "F")	/	("B" x "E")	SSLR
High Prob	(102* x 630)	/	(14 x 251)	
Intermed	(105 x 630)	/	(217 x 251)	
Low Prob	(39 * 630)	/	(273 * 251)	
Normal	(5 * 630)	_ / _	(126 * 251)	

-		
-		
-		

Appload				
Result	("A" x "F")	/	("B" x "E")	SSLR
High Prob	(102* x 630)	/	(14 x 251)	18.287
Intermed	(105 x 630)	/	(217 x 251)	1.214
Low Prob	(39 * 630)	/	(273 * 251)	0.359
Normal	(5 * 630)	/	(126 * 251)	0.100

	11 2				
Result	Ν	% W/Dis	Ν	% W/O Dis	SSLR
High Prob	102		14		
Intermed	105		217		
Low Prob	39		273		
Normal	5		126		
Total	251		630		

Ventilation- • Approac	P Perfus h 2	IOPED SS ion (V/Q) se	SLR E	xample g	
Result	Ν	% W/Dis	Ν	% W/O Dis	SSLR
High Prob	102	.4064	14		
Intermed	105	.4183	217		
Low Prob	39	.1554	273		
Normal	5	.0199	126		
Total	251	1.00	630		

VentilationApproac	Perfus h 2	ion (V/Q) s	cannin	g	
Result	Ν	% W/Dis	Ν	% W/O Dis	SSLR
High Prob	102	.4064	14	.0222	
Intermed	105	.4183	217	.3444	
Low Prob	39	.1554	273	.4333	
Normal	5	.0199	126	.2000	
Total	251	1.00	630	1.00	

Ventilation• • Approac	PIOPED SSLR Example Ventilation-Perfusion (V/Q) scanning • Approach 2						
Result	N	% W/Dis	N	% W/O Dis	SSLR		
High Prob	102	.4064	14	.0222	18.31		
Intermed	105	.4183	217	.3444	1.215		
Low Prob	39	.1554	273	.4333	0.359		
Normal	5	.0199	126	.2000	0.100		
Total	251	1.00	630	1.00			

Ventilation • Approac	PIOPED Perfusion (V/Q h 3	SS) sc	LR Example anning	
Result	Se _{j=i+1} -Se _{j=i}	/	(1-Sp _{j=i+1} -1-Sp _{j=i})	SSLR
High Prob		_		
Intermed				
Low Prob				
Normal				

Ventilation Approace 	-Perfusion (V/Q) h 3	SC	anning	
Result	Se _{j=i+1} -Se _{j=i}	/	(1-Sp _{j=i+1} -1-Sp _{j=i})	SSLR
High Prob	.4063700000			
Intermed	.8247040637			
Low Prob	.9800882470			
Normal	1.000098008			

Result	$Se_{j=i+1}$ - $Se_{j=i}$	/	$(1-Sp_{j=i+1}-1-Sp_{j=i})$	SSLR
High Prob	.4063700000		.0222200000	
Intermed	.8247040637		.3666702222	
Low Prob	.9800882470		.8000036667	
Normal	1.000098008		1.080	

Ventilation Approact 	PIOPED S -Perfusion (V/Q) ch 3	sca	LR Example anning	
Result	Se _{j=i+1} -Se _{j=i}	/	(1-Sp _{j=i+1} -1-Sp _{j=i})	SSLR
High Prob	.4063700000		.0222200000	18.288
Intermed	.8247040637		.3666702222	1.214
Low Prob	.9800882470		.8000036667	0.359
Normal	1.000098008		1.080	0.100

