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Pre-test Probability of Disease

• An important anchor for developing management 
strategies for patients

– Can be adjusted to account for additional information 
(either from physician's experience or from patient's 
history)

• Unless evaluating a general screening program, 
population prevalence is inadequate for establishing pre-
test probability

– Depends instead on prevalence in patients with 
particular sets of clinical findings

Clinical Prediction Rules

• Models for assigning patients to subgroups for whom 
probabilities of disease are known or for suggesting a 
diagnostic or therapeutic course of action (e.g., who 
should receive a radiograph and who should not)

• Based on clinical studies in which specified data are 
obtained from patients with and without disease

• Toll et al.*: number of articles discussing prediction rules 
doubled from 6700 in 1995 to 15,700 in 2005

* Toll DB, Jannsen KJM, Vegouwe Y, Moons KGM. Validation, updating and 
impact of clinical prediction rules: A review. J Clin Epi. 2008;61:1085-94
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Diagnostic Tests vs Prediction Rules *

Diagnostic Prediction Modeling Prognostic Prediction Modeling

Explanatory variables, predictors, covariates (X variables)

Diagnostic tests or index tests Prognostic factors or indicators

Outcomes (Y variables)

Target disease/disorder 
(presence vs absence) 

Reference Standard

Event (future occurrence: yes/ 
no) (?? Strep ??);  Event 
definition/measurement

Missing Outcomes

Partial verification Loss to follow-up/censoring

* Colins GS, et al. Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD): the TRIPOD 
Statement. Ann Intern Med. 2015; 162: 55-63. doi:10.7326/M14-0697.

Steps In Developing Prediction Rules

I. Hypothesis generation

II. Choice of gold standard

III. Choice of predictor variables

IV. Study Sample / Sample size

V. Data collection

VI. Construction of rule

VII. Test characteristics / Incremental information and cost 
in different specifications of a rule

VIII. Assessment of validity of rule

IX. Provision of information that helps clinicians identify a 
course of action

X. Assessment of whether rule affects practice

Illustration

• 2+ prediction rules for strep pharyngitis *
– Walsh

• Revised Walsh
– Centor

• Modified Centor

* Walsh BT et al. Recognition of streptococcal pharyngitis in adults. 
Arch Intern Med. 1975;135:1493-7.

* McGinn TG, et al. Validation and modification of streptococcal pharyngitis 
clinical prediction rules. Mayo Clin Proc. 2003;78:289-93.

* Centor et al. The diagnosis of strep throad in adults in the emergency 
room. Med Decis Making. 1981;1:239-46.

* McIsaac et al. Empirical validation of guidelines for the management 
of pharyngitis in children and adults. JAMA. 2004;291:1587-95.
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Clinical Problem

• 105 outpatient office visits per 1000 US children <15 for 
acute pharyngitis in 2008 (NAMCS)

• Illness generally both benign and self-limited, but 
antibiotics prescribed in a high percentage of visits

• Caused by a multitude of microbial agents

– Most cases have a viral etiology

– Of those with bacterial causes, ß-hemolytic group A 
strep (GABHS) is commonest: 20-30% of cases 
among children; 5-15% of cases among adults

• "Given the frequency of strep throat and the voluminous 
medical literature devoted to this infection..., it is indeed 
surprising that so much controversy persists regarding 
the appropriate diagnosis and management of this 
common and ubiquitous infection.“ (Bisno)

I. Hypothesis Generation

• Consider a clinically relevant, measurable outcome

• Generate potential predictors of event being predicted

• Potential sources

– Clinical experience

– Literature

II. Choice of Gold Standard

• Gold standard should be well specified, objective, and 
defined by reproducible criteria that are more costly to 
assess then are variables in prediction rule (otherwise, 
why not use gold standard)

– i.e., What is outcome (e.g., surrogate or final 
outcome)?

– How will it be measured?

– When will it be measured?

– If it is a surrogate outcome, does it have a well 
established relationship with clinically important 
outcome?

• Gold standard should be understood by audience, 
considered appropriate, and replicable by audience
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Tarnished Gold Standard

• Gold standard is tarnished when outcome is:

– Indeterminate

– Incorrect

– Verified in a nonrandom sample

• Evaluate potential problems associated with tarnishing

• Develop strategy for assigning outcome status

Assessment of Gold Standard

• Blind those deciding on occurrence of predicted events 
to presence of predictors of events

– What do we know about accuracy of radiologic 
readings in absence of information about patient?

Gold Standard. Pharyngitis Example

• Walsh: Positive culture for "group A" ß-
hemolytic streptococci (accuracy = 90%)

• Centor: Positive culture for ß streptococcus
specifically typed with a rapid latex test

• Modified Positive culture for ß streptococcus
Centor *: specifically typed with a latex 

agglutination test
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Gold Standard Concerns

• Cooper et al.  "Diagnosis of GABHS remains a subject of 
controversy, partly because the best standard for 
diagnosis has not been definitively established.... 
Results of throat swab cultures vary according to:“
– Technique
– Site in which sample is obtained and plated

• Posterior pharynx and tonsils increase sensitivity
– Culture medium
– Conditions in which culture is incubated
– If results are checked at 24 or 48 hours.

Cooper RJ, et al. Principles of appropriate antibiotic use for acute pharyngitis in 
adults: background. Ann Int Med. 2001;134:509-17

Gold Standard Concerns (2)

• Throat swabs also fail to distinguish acute infection from 
chronic carrier state

– Organism can be cultured from pharynx in absence of 
symptoms or signs of infection during winter months:

• In approximately 10% of school-age children

• Less frequently in persons in other age groups

Cooper RJ, et al. Principles of appropriate antibiotic use for acute pharyngitis in 
adults: background. Ann Int Med. 2001;134:509-17

Growing Complexities

• In Black et al. evaluation of 4 tests for diagnosis of 
chlamydia: ligase chain reaction (LCR), polymerase 
chain reaction (PCR), culture, and DNA probe (DNAP)

– When culture=gold standard:

• Sensitivities for LRC, PCR, and DNAP were 96.9, 
89.9, and 78.1%; specificities were 97.5, 98.2, and 
99.3

– When LCR=gold standard

• Sensitivities for culture, PCR and DNAP were 80.1, 
75.8 and 60.8%; specificities were 98.4, 99.0 and 
99.6%

Black CM, et al. Head-to-head multicenter comparison of DNA Probe and 
nucleic acid amplification tests for chlamydia trachomatis Infection...            
J Clin Microbiol. 2002;40:3757-63



6

III. Choice of Predictor Variables

• Disease predictors should be well specified, objective, 
clinically sensible, and reproducible

• Don’t use criteria that are used to define outcome as 
predictors of outcome

– Suppose some components of gold standard are 
inexpensive to collect and utilize?

• Blind those deciding on presence of predictors to 
occurrence of predicted outcomes

• When reporting rule, indicate variables that were 
measured but not included in rule (because they did not 
add independent predictive information)

• Omission of a potentially important clinical variables 
does not alter value of rule as developed

Shared Predictor Variables. Pharyngitis Example

Walsh et al. Centor et al.

Cough Cough

Pharyngeal/tonsillar exudate Exudates on tonsils
Exudates on pharynx

Oral temperature Temperature > 101° F

Pharyngeal erythema Injection of pharynx

Swollen tonsils Tonsil swelling

Enlarged/tender cervical nodes Swollen tender anterior or 
posterior cervical notes

Recent contact with someone 
with streptococcal infection

Exposure history

Rhinorrhea Coryza

Distinct Predictor Variables. Pharyngitis Example

Walsh et al. Centor et al.

Loss of hearing --

Tinnitus --

Ear or sinus pain --

-- Duration of symptoms

-- Age

-- Fever history

-- Difficulty swallowing
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McIsaac et al. Predictor Variables

Cough

Tonsillar swelling or exudates

Temperature >38°c (100.4°f)

Swollen and tender anterior 
cervical nodes

Age

3-14

15-44

45+

IV. Study Sample

• “Was the spectrum of patients representative of the 
patients who will receive the test in practice?” (Whiting et al. 
The Development of QUADAS… BMC Medical Research Methodology. 2003;3:25)

• Best design:  Consecutive sample of patients in whom 
you plan to use rule; i.e.,

– Subjects should be demographically representative of 
patient population in which rule will be used

– Subjects with and without disease should be included 
in “correct” proportions

• May want to ensure adequate samples of subgroups of 
interest (to see if rule has same operating characteristics 
among subgroups)

IV. Study Sample (2)

• Potential for bias grows with case/control design or 
convenience samples, due to potential imbalances in 
pre-test probabilities among diseased and nondiseased
subjects

– e.g., bias more likely if all subjects with disease have 
very high pre-test probabilities (e.g., patients with 
many signs and symptoms) and all subjects without 
disease have very low probabilities (e.g., 
undergraduates or medical students) with no signs 
and symptoms
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Study Sample Issues

• Spectrum bias

• Levels of evidence

• Sample size

IVa. Spectrum Bias

• Inclusion of a nonrepresentative sample of patients in 
whom the test will be used in cases where sensitivity and 
specificity are not independent of prevalence

Spectrum Bias Setup: Rapid Antigen Test *

*  Rimoin AW, et al. The utility of rapid antigen detection testing for the diagnosis of 
streptococcal pharyngitis in low-resource settings. Int J Inf Dis. 2010;14:e1048-53

D+ D-

RADT+ 368 87

RADT- 97 1124

465 1231
Se & Sp 79.1 91.3
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Spectrum Bias, Rapid Antigen Test

• Detection of spectrum bias based on assessment of 
sensitivity and specificity, not on PPV or NPV

– i.e., differences in PPV and NPV between Centor 0/1 
and 3/4 neither necessary nor sufficient

D+ D-

Cent 0/1 Cent 3/4 Cent 0/1 Cent 3/4

RADT+ 181 187 RADT+ 44 43

RADT- 66 31 RADT- 813 311

247 218 857 354
Sens 73.3 85.8 Spec 94.9 87.9
p = 0.001 0.000

Spectrum Bias, RADT (2)

• Suppose we’d used a common design for assessing test 
characteristics  (e.g., using people with obvious cancer 
as cases and medical students as controls):

– Enroll diseased patients with lots of signs and 
symptoms (e.g., Centor 3/4) to construct D+ sample

– Enroll nondiseased patients with few if any signs and 
symptoms (e.g., Centor 0/1) to construct D- sample?

D+ D-

RADT+ 187 44

RADT- 31 813

Tot 218 857
Se/Sp 85.8% 94.9%

Spectrum Bias, RADT (3)

• Test characteristics from following feasible tables “better” 
than table derived using “common design”

Mixed Pop Centor 0/1 Centor 3/4

D+ D- D+ D- D+ D-

RADT+ 368 87 181 44 187 43

RADT- 97 1124 66 813 31 311

Tot 465 1231 247 857 218 354
Se/Sp 79.1 91.3 73.3 94.9 85.8 87.9
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More Generally…..

Centor Score
Prevalence       

N (%)

Rapid test 
Sensitivity

% (95% CI)

0,1 (n=169) 23 (14) 61 (54-66)

2 (n=143) 29 (20) 76 (69-83

3 (n=122) 53 (43) 90 (93-100)

4 (n=64) 33 (52) 97 (93-100)

Overall 137 (28) 84 (81-87)

Mantel-Haenszel trend test, p=0.001

DiMatteo, et al. The relationship between clinical features of pharyngitis 
and the sensitivity of a rapid antigen test: evidence of spectrum bias. 
Ann Emerg Med. 2001; 38:648-52.

IVb. “Levels of Evidence” (Laupacis et al.)

• Best: Prospective data collection specifically to develop 
or validate rule

• Data collected as part of another study, not specifically 
undertaken to develop or validate rule

• Least good: Data collected retrospectively

– Because of lack of uniform coding in source data

– Because of lack of blinding of potential risk factors 
and outcome (i.e., those originally recording signs 
and symptoms may have done so based on some set 
of hypotheses they had)

IVc. Sample Size

• One approach to sample size for a prediction rule is to 
base it on desired error rate (e.g., confidence interval) for 
sensitivity and/or specificity

• 2x2 topics lecture notes show how to estimate sample 
size required for measuring a sensitivity or specificity 
with a desired error rate using a formula for confidence 
interval around a single proportion

– Proportion of positive tests among those with disease

– Proportion of negative tests among those without 
disease
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Sample Size and Consecutive Patients

• Discussion of study sample indicated that most robust 
design uses a consecutive sample of patients in whom 
you plan to use rule

• In such a sample, approximately p patients will have 
disease for every 1-p patients who do not (where p 
equals prevalence in sample)

• Using this design, total number of patients you will need 
to sample is larger of Ndis/p and Nnondis/(1-p)

• Separate rule of thumb: require a minimum of 10 
patients with outcome and 10 patients without outcome 
for every predictor variable used in rule

– Can only serve to increase sample size; can never 
serve to reduce sample size!!!

Sample Size. Pharyngitis Example

• Walsh et al.:

– 418 adult patients presenting with a sore throat at an 
HMO ambulatory clinic who had a throat culture

• Centor et al.:

– 222 out of 286 consecutive adults presenting in 
Medical College of Virginia emergency room with 
complaints of sore throat and were not positive for 
non-Group A beta streptococcus

• McIsaac et al.:

– 787 out of 918 screened persons aged 3 to 69 years 
of age who participated in a randomized trial 
comparing 2 different antibacterial therapies for 
Group A beta streptococcus

V. Data Collection

• Uniform data collection in all patients in sample

• Either perform gold standard in everyone or adopt 
appropriate sampling / analytic techniques if gold 
standard is applied in only a subset of subjects
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Additional Data

• In addition to gold standard and predictors, include:

– Demographic and clinical characteristics

• Test performance may depend on age, gender, 
and other patient characteristics that might make 
predictive value of rule different in different 
populations (e.g., whether it’s an asymptomatic 
population vs. symptomatic population, etc.)

– Setting in which data were collected

• Test performance may depend on referral 
characteristics; type of institution (primary, 
secondary, or tertiary); whether it was an office, 
clinic, emergency department, or hospital ward; 
and whether site was teaching or nonteaching

VI. Construction of Rule

• "Eyeball" - Useful to get sense of data

• Univariate (e.g., two by two tables)

• Multivariable

– Discriminant analysis

– Branching algorithms / Recursive partitioning

– Logistic/OLS regression

• Laupacis et al.: logistic regression/ discriminant 
analysis maximize accuracy while recursive 
partitioning results in 1 or more strata that include 
only patients with a particular outcome

– Neural networks

Discriminant Analysis. Pharyngitis Example

Walsh et al.

• +3 for each degree of temperature over 36.1°

• +17 for recent exposure to strep infection

• -7 for recent cough

• +6 for pharyngeal exudate

• +11 for enlarged or tender cervical lymph nodes
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Translation of Scores to Probabilities

Score Probability (%)

-10 - 0 1.8

1 - 10 4.6

11-20 18.0

21-30 19.0

31-40 22.0

41+ 100.0

• Walsh et al.

Revised Walsh Risk Scoring System

• McGinn et al. simplified Walsh rule:

• Single points are assigned to five risk factors:

• Total score ranges between -1 and +4

Risk factor Score

Temperature >38.3°c +1

Exposure to known strep contact +1

Phayngeal or tonsillar exudates +1

Enlarged or tender nodes +1

Recent cough -1

Translation of Scores to Probabilities

Score LR 95% CI Probability (%)

-1 0.16 0.05 - 0.42 4.6

0 0.62 0.29 - 1.20 15.9

1 2.61 1.49 - 4.44 44.4

2 4.35 1.65 - 11.26 57.1

3+ 8.14 1.88 - 35.23 71.4
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Branching Algorithms / Recursive Partitioning

• Builds an empirical tree diagram by:

– Identifying best predictor of disease and dividing 
entire study population into two groups: one with 
predictor (and a relatively high risk of disease) and 
one without it (and with a relatively low risk of 
disease)

– Sequentially dividing each group into subgroups with 
each of remaining predictors

• Each path along tree represents a sequence of clinical 
findings and defines a patient subgroup (and associated 
probability of disease)

• Software is available

• If score for recent exposure to strep infection is +17 and that 
for enlarged or tender cervical lymph nodes is +11, why     
isn’t recent exposure first branching point?

Recursive Partitioning Algorithm Adults with Sore Throat

p(strep) = 0.04

p(strep) = 0.20

p(strep) = 0.20

Oral temperature

>101 F

(+3/degree)

p(strep) = 0.15

Recent cough

(-7)

Recent exposure

to streptococci

(+17)

Pharyngeal

exudate

(+6)

Enlarged or

tender

cervical nodes

(+11)

No

No

Yes Yes

Yes

No

No

Yes

p(strep) = 0.15
Yes

No

Clinical Information

• Clinical information supplied by a predictor depends on:

– Likelihood ratio / Odds ratio / relative risk / 
discriminant score AND

– Fraction of people in whom predictor is present

• Predictor that indicates a 95% probability of disease but 
is present in only 1% of population generally less 
informative than predictor that indicates a 50% 
probability of disease and is present in 15% of 
population
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Logistic Regression. Pharyngitis Example

Centor et al.

• Four clinical features

– Tonsillar exudates

– Swollen and tender anterior cervical lymph nodes

– Lack of cough

– History of fever

Calculating Predicted Probability of Disease

• Proceeds in 2 Steps

Step 1.  Use Estimated Coefficients and Explanatory 
Variables to Calculate a Risk Score "S"

Where S = α + ∑ βi Xi

α = Intercept

βi = Coefficients from logistic regression

Xi = Predictor Variables

Strep Pharyngitis Coefficients

• For a person with tonsillar exudates and fever history 
risk score S equals:

-2.69 + 1.04 + 0.89 = -0.76

Variable Coef.

Intercept -2.69

Tonsillar exudates 1.04

Swollen/tender anterior cervical nodes 1.00

Cough -0.95

Fever history 0.89



16

Risk Score S

• S ranges between -∞ and +∞

• When S approaches -∞, predicted probability 
approaches 0; when S approaches ∞, predicted 
probability approaches 1

• When S = 0, predicted probability = 0.5

Calculating Predicted Probability of Disease (II)

• Step 2. Transform S into a probability

• For a person with tonsillar exudates and a fever history

p =
e-0.76

=
0.46767

= 0.3184
1 + e-0.76 1+ 0.46767

p =
es

1 + es

Other Risk Scores / Probabilities

• Risk scores for probabilities greater than 0.5 (1-p) are 
absolute value of risk scores for probabilities (p) less 
than 0.5 (e.g., risk score representing a probability of 
90% is 2.1972246)

Probability (%) Risk Score S

10 -2.1972246

20 -1.3862944

30 -.84729786

40 -.40546511

50 0
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Create a Risk Scoring System

• Creating a risk scoring system based on values of 
independent variables and coefficients

– Centor coefficients

1.04 Tonsillar exudates

1.00 Swollen/tender anterior cervical nodes

0.95 Absence of Cough

0.89 Fever history

– Reasonable to assume equal weighting

Equally Weighted Risk Scoring System

• Centor et al.

Number of Features 
Present Probability (%)

0 2.5

1 6 - 6.9

2 14.1 - 16.6

3 30.1 - 34.1

4 55.7

Moving a Rule to a Practice with a Very Different 
Prevalence of Disease?

• Suppose we develop a prediction rule in population with 
a probability of disease of 10% and want to use it in 
population with a probability of disease of 5%

• Would the predicted probability of disease be accurate in 
latter population?

– Could be accurate if risk among patients without risk 
factors remains 2.5% and if primary reason for 
difference was a lower prevalence of risk factors (e.g., 
fewer patients develop tonsillar exudates, fewer have 
a fever history, etc.)
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Moving Rule When Prevalence Differs 

– Unlikely to be accurate if individuals without any risk 
factors in new population (e.g., ones with a score of 
0) have a risk for disease that differs from 2.5%

• If odds ratios are unaffected between two 
populations, we can adjust for this difference by 
changing risk for disease in those without risk 
factors (i.e., a change in intercept from logistic 
regression)

– Unlikely to be accurate if odds ratios for risk factors 
differ (i.e., changes in coefficients from logistic 
regression)

Intercept Shift Revision of Rule

• When moving rule to a population with a lower 
prevalence of disease, Centor et al. subtracted 
approximately 1.3 from intercept to modify rule for new 
setting

Score ~S Probability (%)

-1 -4.9636 1

0 -3.9774 2

1 -3.0074 5

2 -2.0492 11

3+ -1.071 25

McIsaac Score

Feature Score

Temperature >38°c 1

Absence of cough 1

Swollen and tender anterior 
cervical nodes

1

Tosillar swelling or exudates 1

Age

3-14 1

15-44 0

45+ -1
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McIsaac Scoring System

Score
Probability of

Disease
Suggested 

Management

<0 1 - 2.5% No further testing or 
Rx1 5 - 10%

2 11 - 17% Culture all; Rx for 
positives3 28 - 35%

4 51 - 53% Rx all and/or culture

General Principles for Generating Risk
Scoring Systems †

• Calculating ΣβiXi tedious and likely a disincentive to use 
of prediction rules

• Often avoided by constructing a point system
– System assigns integer points to each level of each 

risk factor to approximate (relative) ΣβiXi

• Risk estimates derived from reference table that reports 
risks for different point totals

• Point systems usually break continuous variables into 
categories
– May want categories to mirror clinically meaningful 

risk factor categories
• e.g., JNC VIII blood pressure categories

†  Sullivan LM, Massaro JM, D'Agostino Sr RB. Tutorial in biostatistics: 
Presentation of multivariate data for clinical use: The Framingham Study 
risk score functions. Statist. Med. 2004;23:1631-60

Steps in Generating Risk Scoring Systems

1. Categorize risk factors and calculate βiXi for reference 
values

– Calculate scores

2. Translate scores into points

3. Determine risks associated with point totals
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Reporting on Construction of Rule (Laupacis et al.)

• Adequately describe and justify mathematical technique 
used to derive rule

• Address whether or not you avoided problem of 
overfitting data with too few events per predictor 
variable

Reporting on Construction of Rule (2)

• Specify how variables were selected (e.g., did you use 
a preliminary screen based on univariate association 
and reliability?)

– Prespecify predictors that will be used in model

– Develop prespecified criteria for selecting predictors

• i.e., all variables with correlations of 0.15 or 
greater are candidates; backward stepwise 
procedure; reassess correlation of regression 
residuals and non-candidates

• Specify regression diagnostics utilized (influential 
observations and multicollinearity)

Reproducibility

• Reproducibility (interobserver agreement) applicable 
both for assessment of predictor variables and of rule

• Measured either with kappa statistic or correlation 
coefficient

• Values less than 0.6 generally represent lack of 
agreement

• Predictors with low reproducibility should not be included 
in rule

• Given costs involved with assessment, can be assessed 
for a representative subset
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VII. Test Characteristics

• Discrimination

• Calibration

• Deal with patients with indeterminant disease status

Discrimination

• Ability to assign different scores to those with and 
without disease

– e.g., to assign generally lower scores to those without 
disease and to assign generally higher scores to 
those with disease

– Discrimination is a property of scores

– Given that predicted probabilities can be interpreted 
as scores, it applies to probabilities as well

• Measures of discrimination

– Sensitivity and specificity

– ROC analysis

– ROC area

Interpretation of ROC Area

• ROC areas can range between 0.5 (area under 45º line 
of no information) and 1.0 (area under ROC curve of a 
dichotomous test that has 100% sensitivity and 
specificity)

– Area of 0.5 represents no ability to discriminate risk

• Test assigns a similar distribution of scores to 
those in whom disease is present and those in 
whom disease is absent

– Area of 1.0 represents perfect discrimination

• No overlap in distribution of scores assigned to 
those in whom disease is present and those in 
whom disease is absent
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Interpretation of ROC Area (2)

• Although curves with ROC areas of 0.5 and 1.0 are 
clearly distinguishable, there is little systematic 
information available about benefit of small increases in 
area under ROC curve (e.g., an increase from 0.75 to 
0.77)

– But, tests with larger areas under their ROC curve in 
general are more discriminating than are tests with 
smaller areas

Interpretation of ROC Area (3)

• Technically, ROC area equals probability that rule will 
correctly rank any randomly selected pair of persons, 
one in whom outcome of interest is present and one in 
whom it is absent

– Nonparametric area represents p-value we derive 
from a Wilcoxon rank sum test

– How often do pairs of patients walk into a provider's 
office; declare that one has disease while other does 
not, and then ask "which of us has a higher test 
score?"

Interpretation of ROC Area (4)

• ROC area is used as a measure of discrimination in 
many applications other than diagnostic test evaluation

– C-statistic that is routinely reported by SAS as an 
index of discriminating ability of fitted logistic 
regressions models equals nonparametric area under 
logistic regression's ROC curve

– Similarly, lroc command in STATA that can be run 
after logistic regression reports same area
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McGinn et al ROC Curve

McIsaac* Sensitivity and Specificity

* Test characteristics for he proposed testing and 
treatment algorithm

Sample Sensitivity (%) Specificity (%)

All 100 93.2 (90.8 - 95.1)

<18 100 90.3 (86.4 - 93.4)

18+ 100 96.5 (93.5 - 98.4)

Discrimination Not Only Criterion for a Good Prediction

• Example of a perfectly discriminating, but in some sense 
mistaken, prediction

– If weatherperson always says there is a 51% chance 
of rain on days when it rains and always says there is 
a 49% chance of rain on days when it does not rain, 
he/she is perfectly discriminating (sensitivity = 1.0; 
specificity = 1.0)

• Example of a totally nondiscriminating, but in some 
sense accurate, prediction

– If weatherperson always says there is a 30% chance 
of rain, and in truth it rains 3 out of every 10 days (i.e., 
he/she gives same score to every day, whether it 
rains or not)
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Calibration

• Calibration is a measure of accuracy of predicted 
probabilities of disease

– e.g., degree to which observed and predicted 
probabilities are equal

• Because it is a property of predicted probabilities and not 
scores like serum creatinine or hemoglobin levels, does 
not play a role in evaluation of diagnostic test 
characteristics

• Could play a role in evaluation of a physician’s pre-test 
probabilities or of post-test probabilities

Types of Calibration

• (At least) two types of calibration:

– Calibration in the large

– Calibration in the small

Calibration in the Large

• Property of full sample

• Calculated by comparing observed probability in full 
sample with average predicted probability in full sample 
(i.e., average of each of predictions)

– e.g., if 100 out of 1000 patients have outcome being 
predicted and average predicted probability is 10%, 
prediction rule is perfectly calibrated in the large

• For sample in which logistic regression is estimated, 
results are always perfectly calibrated in the large (i.e., 
average of predicted probabilities equals average 
probability in sample)
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Calibration in the Large: Necessary But Not Sufficient

Obs # Truth Pred Rule 1 Pred Rule 2

1 0 1.0 0.0

2 0 1.0 0.0

3 0 1.0 0.0

4 0 0.0 0.0

5 0 0.0 0.0

6 0 0.0 0.0

7 0 0.0 0.0

8 1 0.0 1.0

9 1 0.0 1.0

10 1 0.0 1.0

Avg Prob 30% 30% 30%

• 2 rules have identical calibration in large, but rule 2        
is better than rule 1

Calibration in the Small

• Property of subsets of sample

– Calculated by comparing observed probability in each 
subset with average predicted probability in subset

• A weatherperson who makes 3 kinds of predictions (e.g., 
5% chance of rain today, 50% chance of rain today, and 
95% chance of rain today) is well calibrated in the small if:

– On days with 5% predicted probability, 5% of time it 
rains;

– On days with 50% probability, 50% of times it rains;

– On days with 95% probability, 95% of times it rains

Why is calibration in the small a property of 
subsets of sample rather than of individual 

observations in sample?
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Why is calibration in the small a property of 
subsets of sample rather than of individual 

observations in sample?

Because a group of like patients may each have a 
30% chance of disease (0.3), but in truth, 3 will 

have disease (1) and 7 won’t (0)

Calibration Curve: Calibration in the Small

• 2 axes 
(Unaware of 
consensus)

• 45° line
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Steps in Plotting Calibration in the Small

1. Obtain required 2 data items for each individual
– Predicted probability of outcome
– Gold standard determination

2. Using predicted probability, rank order observations from 
lowest to highest

3. Divide rank-ordered observations into groups (e.g., if there 
are 1000 observations, 20 groups of 50 observations)

4. Calculate observed probability / group (number of 
outcomes coded a 1 divided by total observations / group

5. Calculate mean predicted probability in each group
6. Plot observed and mean predicted probabilities for each 

group (e.g., 20 points on calibration plot)
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Step 3: Divide Rank Ordering Into Groups

• Hosmer and Lemeshow indicate goal of division is 
creation of equal sized groups, not, for example, to use 
deciles or ventiles of risk

– e.g., lowest 5% of distribution, 5 to 10% of the 
distribution, etc. NOT observations with probabilities 
less than 5%, probabilities between 5% and 10%, etc.

• Noise can be added to calibration test if lots of tied 
predicted probabilities and (to keep group size equal) tied 
cases fall within more than 1 group (for example with Stata 
xtile command)

– As far as possible, observed probability for ties should 
be equal within each group in which they are 
included….

Ties

Subgroup
Pred

Prob (%)
Truth 

(Good)
Truth 
(Bad)

Truth 
(Bad)

Subgroup 4

. . . .

30 0 0 0

33.3 0 0 0

33.3 0 1 0

33.3 1 1 0

Subgroup 5

33.3 0 0 0

33.3 0 0 1

33.3 1 0 1

35 0 0 0

. . . .

Calibration in the Small

Obs #
Pred Prob 

(%)
Truth

Pred / Obs (%)

1 25 0

2 30 1 30. 3 / 33.3

3 36 0

4 45 0

5 46 1 50.5 / 50

6 55 0

7 56 1

8 61 0

9 66 1 66.3 / 66.7

10 72 1

Avg Prob 49.2% 50%

Roc area: 0.72
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Step 6: Plotting Observed and Predicted

• Expectation that there will be dispersion around the 45⁰ 
degree line
– Points with larger vertical (or horizontal) distances from    

45⁰ degree line worse than points with smaller 
distances

• Most problematic when dispersion has a pattern
– E.g., generally below 45⁰ degree line for lower 

predicted probabilities and above 45⁰ degree line for 
higher predicted probabilities OR “happy face” OR “sad 
face” OR sigmoidal

Mortality Prediction, Suspected Alzheimer’s Disease

• Based on data from 2023 and 590 elderly persons for whom data on 
mortality after 5 and 10 years of follow-up, respectively, were available

0.00 0.25 0.50 0.75 1.00

Observed Probability of Survival

0.00

0.25

0.50

0.75

1.00

P
re

di
ct

ed
 P

ro
ba

bi
lit

y 
of

 S
ur

vi
va

l

5-Years 10-Years

Analogs of Calibration in the Large and Small

• In describing “stability” as a good property for judging 
accuracy of microwave/caesium vs laser/strontium 
atomic clocks:

– “…if you have your wristwatch, and one day you are 
one second late, and one day one second early 
[analog of calibration in the small], then your clock is 
not stable. But it could still have good accuracy if over 
a million days the time is correct [analog of calibration 
in the large]“

Morelle R. Optical lattice atomic clock could 'redefine the second,’ 
07/09/13, http://www.bbc.co.uk/news/science-environment-23231206

• Microwave/cesium lose 1 second / 100m years; 
laser/strontium lose 1 second / 300m years

• (2016) optical single-ion ytterbium clock: accuracy      
100 times better than cesium clocks



29

Calibration Statistics

• Logistic regression - Hosmer and Lemeshow or Pearson

• Yates Decomposition

Example Data

Not Cured Cured

Obs# Cure Inftype Severe Obs# Cure Inftype Severe

1 0 0 0 11 1 0 0

2 0 0 1 12 1 0 1

3 0 0 2 13 1 0 2

4 0 0 3 14 1 1 0

5 0 0 3 15 1 1 0

6 0 0 4 16 1 1 1

7 0 0 5 17 1 1 1

8 0 1 3 18 1 1 2

9 0 1 4 19 1 1 3

10 0 1 5 20 1 1 4

Sample Statistics

Not Cured Cured

Infection type=1 30% 70%

Severity 3 (1.63) 1.4 (1.35)
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logistic cure inftype severity

Logit estimates Number of obs =   20

LR chi2 (2)       =   10.92

Prob > chi2 =   0.0042

Log likelihood = -8.40 Pseudo R2 =   0.3939

cure OR Std Err. Z P>|z|

Inftype 22.07 35.94 1.90 0.057

Severity 0.3240 0.1757 -2.08 0.038

lroc,nograph

Logistic model for cure

number of observations =       20

area under ROC curve   =   0.8750

ROC Curve for Cure Example

logit cure inftype severity

lroc
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1 - Specificity

Area under ROC curve = 0.8750
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Hosmer and Lemeshow Statistic

estat gof,group(4) table

Logistic model for cure, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.1936 0 0.4 5 4.6 5

2 0.4595 3 2.1 3 3.9 6

3 0.7914 2 2.8 2 1.2 4

4 0.9830 5 4.7 0 0.3 5

Number of observations = 20

Number of groups = 4

Hosmer-Lemeshow chi2(2) = 1.95

Prob > chi2 = 0.3768

• p>0.05: no significant evidence of lack of calibration

Pearson Chi2 Statistic

estat gof

Logistic model for cure, goodness-of-fit test

Number of observations = 20

Number of covariate patterns = 12

Pearson chi2(9) = 2.54

Prob > chi2 = 0.9798

Calibration and Discrimination, Examples

• Is following weather person well discriminating and well 
calibrated?

– Example 1:  Every day, weatherperson makes 1 of 
only 2 predictions, either a 49% chance of rain or a 
51% chance of rain.  On all days when she says there 
is a 49% chance of rain, it fails to rain; on all days 
when she says there is a 51% chance of rain, it rains
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Calibration and Discrimination, Example 2

• Is following weather person well discriminating and well 
calibrated?

– Example 2:  Every day, weatherperson makes 1 of 
only 2 predictions, either a 5% chance of rain or a 
95% chance of rain.  On days when she says there is 
a 5% chance of rain, it rains 5 of every 100; on days 
when she says there is a 95% chance of rain, it rains 
95 of every 100

Calibration and Discrimination, Example 3

• Is the following weather person well discriminating and 
well calibrated?

– Example 3:  Every day, weatherperson predicts there 
is a 50% chance of rain (and in truth it rains 5 out of 
every 10 days)

Calibration and Discrimination, Example 4

• Is the following weather person well discriminating and 
well calibrated?

– Example 4:  Every day, weatherperson makes 1 of 
only 2 predictions, either a 5% chance of rain or a 
95% chance of rain.  On days when she says there is 
a 5% chance of rain, it rains 2 of every 10; on days 
when she says there is a 95% chance of rain, it also 
rains 2 of every 10

– What would you say if on 16.7% of all days 
weatherperson said 95%?

(.167 *.95) + (.833*.05) = 0.2
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Calibration and Discrimination

• Rules can be well discriminating (or poorly 
discriminating) when calibration in the small is either 
good or bad

• Rules can be well calibrated (or poorly calibrated) when 
discrimination is small or large

• There is nothing in the ROC curve (discrimination) that 
tells us anything about calibration

• But is there information in the calibration curve that tells 
us something about discrimination?

What does calibration curve look like for a 
highly discriminating and well calibrated 

prediction rule?

Example: Discrimination for Well Calibrated Rule

• All 3 rules are perfectly calibrated in the small

• Thus, all 3 rules are perfectly calibrated in the large

Strata

1 2 3 4 5 Total

Rule
1

D+ 40 45 50 55 60 250

D- 60 55 50 45 40 250

Pred P 40% 45% 50% 55% 60% 50%

Rule
2

D+ 10 30 50 70 90 250

D- 90 70 50 30 10 250

Pred P 10% 30% 50% 70% 90% 50%

Rule
3

D+ 5 10 50 90 95 250

D- 95 90 50 10 5 250

Pred P 5% 10% 50% 90% 95% 50%
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ROC and Calibration Curves, 3 Rules
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Conclusions: Discrimination for Well Calibrated Rule

• All 3 rules well calibrated in the large and the small, but 
each have different discriminating ability

• When points on a calibration curve are clustered 
together, discrimination cannot be good

• When points pushed towards both ends of calibration 
curve (e.g., large fractions of predictions between 0 and 
20% and large fractions between 80 and 100%), 
discrimination will be reasonably good

Must a well-discriminating rule be well 
calibrated?
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Example: Discrimination for Poorly-Calibrated Rule

• All 3 prediction rules have poor calibration in the small, 
although all 3 rules are calibrated in the large

Strata

1 2 3 4 5 Total

Rule
1

D+ 40 45 50 55 60 250

D- 60 55 50 45 40 250

Pred P 45% 47.5% 50% 52.5% 55% 50%

Rule
2

D+ 10 30 50 70 90 250

D- 90 70 50 30 10 250

Pred P 30% 40% 50% 60% 70% 50%

Rule
3

D+ 5 10 50 90 95 250

D- 95 90 50 10 5 250

Pred P 27.5% 30% 50% 70% 72.5% 50%

ROC and Calibration Curves, 3 Rules
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Rule 2: Area=0.82; SE=0.02

Rule 3: Area=0.92; SE=0.01

Conclusion: Discrimination for Poorly-Calibrated Rule

• Discrimination has to do with points on calibration curve 
falling close to 0 and 1 on observed axis, not with points 
on calibration curve falling near the 45̊ line 

• Independent of whether points on calibration curve are 
near 45̊ degree line, discrimination cannot be very good 
when points are clustered together on calibration curve

• Independent of whether points on calibration curve are 
near 45̊ degree line, discrimination will be good when 
points are pushed towards both ends of calibration curve
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When points on calibration curve are clustered 
(e.g., between 5% and 25%, between 40% and 

60%, and between75% and 95%), does 
location of cluster affect discrimination?

Example: Discrimination and Location of Cluster

Strata

1 2 3 4 5

Rule
1

D+ 40 45 50 55 60

D- 60 55 50 45 40

Pred P 40% 45% 50% 55% 60%

Rule
2

D+ 5 10 15 20 25

D- 95 90 85 80 75

Pred P 5% 10% 15% 20% 25

Rule
3

D+ 75 80% 85% 90% 95

D- 25 20% 15% 10% 5

Pred P 75% 80% 85% 90% 95%

ROC and Calibration Curves, 3 Rules
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Conclusions: Location of Cluster

• Even though rules appear similar, in that there are 
absolute 5% differences between each stratum:

– ROC area reaches a minimum when centered at 50%

– ROC areas are equal as clusters symmetrically 
approach two ends of probability distribution, and are 
increasing

– Whether or not a rule is well calibrated, when points on 
calibration curve are clustered within a small region, 
rule’s discriminating ability will be small

Calibration In Diseased and Nondiseased Individuals

• When we construct calibration plot, we rank order 
observations by predicted probability

• Why don’t we rank order them by observed outcome??

Diseased and Nondiseased Individuals

• Calibration is a property of predicted probabilities, not of 
known disease status

– If we accurately characterize a probability of disease 
as 5%, 95 of 100 will not have disease; if we 
accurately characterize a probability of disease as 
95%, 5 of 100 will not have disease

– Implication:  Even for very good prediction rules:

• Subjects without disease should NOT be expected 
to have a predicted probability of disease of 0%

• Subjects with disease should NOT be expect to 
have a predicted probability of disease of 100%
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Suppose We Did Order Lexicographically By Disease 
Status and Observed Probability???
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Incremental Information and Costs in Different 
Specifications of a Rule

• Clinical information

– Differences in intercepts

– Differences in area

• Costs

Steyerberg et al.*:  Prediction Model Performance

• “reporting discrimination and calibration will always be 
important for a prediction model”

• Model discrimination “will commonly be most relevant for 
research purposes”

• “calibration is important if model predictions are used to 
inform...making decisions”

– Cox “recalibration parameters” and validation plots 
may be better than H&M test

• “novel measures for reclassification and clinical 
usefulness can provide valuable additional insight”

* Styerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, et al. 
Assessing the performance of prediction models: a framework for 
traditional and novel Meaures. Epidemiology. 2010; 21:128-38.
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VIII. Assessment of Validity *

• Predictive validity refers to quality of rule's predictions in 
sample in which it was developed and in new samples

• Most prediction rules lose accuracy when used in 
patients who were not included in derivation sample

– e.g., ROC area for prediction rule diagnosing serious 
bacterial infection in children presenting with fever 
without apparent source equaled 0.76 (95% CI 0.66 
to 0.88) in derivation data set, but equaled 0.57 (95% 
CI, 0.47 to 0.67) when applied to new patients from 
another hospital in a later period

* Material in sections VIII, X, and XI drawn in part from Toll DB, Jannsen
KJM, Vegouwe Y, Moons KGM. Validation, updating and impact of clinical 
prediction rules: A review. J Clin Epi. 2008;61:1085-94.

Sources of Reduced Accuracy

• Differences between derivation and validation population 
(case-mix)

• Differences in definitions of predictors and outcome 
variable and measurement methods between derivation 
and validation populations

• Improvement over time in measurement techniques, 
which may affect strength of a predictor

Apparent Differences

• Apparent differences may be due to fact that validation 
studies commonly include fewer individuals than 
development studies

– Apparent differences may be due to random variation

• For prediction rules that predict dichotomous outcomes, 
suggested that validation sample should contain at least 
100 events and 100 nonevents to detect substantial 
changes in accuracy (for example, a 0.1 change in ROC 
area) with 80% power
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Internal Validity

• Quality of prediction in derivation dataset

• Calibration and discrimination are 2 measures of internal 
validity

• Bootstrapping, split-samples, and training/test datasets 
are internal validation techniques (because they are 
performed on derivation dataset) used to address 
external validation concerns of overfitting or "optimism"

Internal Validity (2)

• Overfitting is modeling of relationships that are specific 
to derivation dataset, and would not hold in other 
datasets

• One approach for addressing overfitting is to:

– Draw repeated bootstrap samples

– Perform variable selection in each

– Use resulting model in bootstrap dataset as well as 
full derivation dataset and calculate each area under 
ROC curve

– Interpret difference in mean areas between bootstrap 
and derivation datasets as a measure of "optimism"

External Validity

• Quality of prediction in a new validation dataset

• Report information about study population so its 
generalizability can be assessed.  Data include:

– Medical setting from which patients were drawn,

– Age, gender, and clinical characteristics of patients
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"Levels" of External Validation

• Temporal validation

– Tests generalizability of a prediction rule over time, 
typically using same physicians or investigators as in 
development study, in same institution(s), and in 
similar patients

• Geographical validation

– Tests generalizability of a prediction rule in a patient 
population that is similarly defined as development 
population, but in hospitals or institutions of other 
geographical areas

"Levels" of External Validation (2)

• Domain validation

– Evaluates generalizability of a prediction rule across 
patients from different settings (primary, secondary, or 
tertiary care / inpatients versus outpatients), patients 
of different ages or genders, and perhaps from a 
different type of hospital (academic vs. general 
hospital)

• Level of evidence of validation increases as we go down 
list

Assessment of Validity Pharyngitis Example

• Walsh et al.

– “[The rules were] developed on the basis of the data 
collected in the first five months of the study (246 
patients) and then shown to perform as effectively on 
the next 172 patients."



42

Updating Prediction Rules

• When a validation study shows disappointing results, we 
may want to consider updating  rule by combining 
information from original rule with information from 
validation population

• Six general strategies

1.  If prevalence differs dramatically between study 
populations, adjust intercept of original prediction rule 
(e.g., updating Centor strep rule)

2."Logistic recalibration":  Adjust Intercept / coefficients 
with a single correction factor estimated from data of 
new patients in validation set

* These two methods may improve calibration, but 
cannot improve discrimination, because 
recalibration does not affect rankings

Updating Prediction Rules (2)

• Model revisions that modify discrimination and 
calibration:

3. Re-estimate regression coefficients that for those 
variables that differ by use of validation data

4. Use validation data to estimate coefficients for 
predictors that were omitted from original rule

5. Re-estimate intercept and all predictors by use of 
validation data

6. Re-estimate intercept and predictors  and estimate 
coefficients for predictors that were omitted from 
original rule by use of validation data

IX. Provision of Information That Helps Clinicians 
Identify a Course of Action  after Applying 

Prediction Rule

• Laupacis et al.:  “Rules are more likely to be used if they 
suggest a course of action rather than provide a 
probability of disease.  This is likely to be particularly true 
in situations where a decision must be made quickly.”
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Courses of Action:  Pharyngitis Example

• Tompkins' Decision Rule (Ann Int Med, 1977):

– Withhold treatment and do not obtain cultures when P 
< 5%

– Obtain cultures when P > 5% and < 20%; treat if 
positive culture

– Treat without culture when P > 20%

• McIsaac's Decision Rule (JAMA, 2004)

– For scores <1, p < 10%:  Withhold treatment and do 
not obtain cultures

– For scores of 2 or 3, 11% < p < 35%:  Obtain cultures 
and treat if positive culture

– For scores > 4, p > 50%:  Treat without culture

Course of Action (II)

• McGinn (revised Walsh algorithm) recommends:

– Empiric therapy for all patients with a score of 2+ 
(>55% post-test probability) and rapid testing for 
patients with scores of 0 or 1 (post-test probability > 
15%)

ACP Guidelines

• ACP, AAFP, and CDC consider it reasonable not to 
perform a throat culture or rapid antigen-detection test if 
all 4 “Centor” clinical features are present

• Endorse three strategies for adults with two or more 
features:

– Treat patients with a positive rapid test

– Treat without testing if all 4 clinical features are 
present or after a positive rapid test if 2 or 3 features 
are present

– Treat without testing if three or four features are 
present

• More concerned with cost and loss to follow-up than with 
resistance
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IDSA Guidelines

• Do not test if there are “clinical and epidemiological 
features that strongly suggest a viral etiology (eg, cough, 
rhinorrhea, hoarseness, and oral ulcers”

– Only use of Centor rule

• Rapid test and/or culture should be performed before 
any treatment is initiated. Negative RADT test should be 
backed up with culture in children >3 and adolescents, 
but not in adults (under usual circumstances)

• Positive rapid tests do not need to be backed up

• Therapy should not be initiated until either rapid test or 
culture is positive

• Penicillin or amoxicillin is recommended drug of choice 
for those non-allergic to these agents

X. Assessment of Whether Rule Affects Practice

• Providers may not use a rule's predictions because:

– They believe, or it has been demonstrated, that their 
predicted probability is at least as good as probability 
calculated with a prediction rule

• e.g., Sinuff et al. found that ICU physicians more 
accurately discriminated between survivors and 
nonsurvivors in first 24 hours of ICU admission 
than did ICU survival prediction rules

– They believe their patients are different from those 
used in development of rule

– They are afraid they won't apply rule correctly

– They feel false negative rate is too high

Sensibility

• Physicians also may not use rule if they don't find it to be 
sensible (to have face validity) even if it can be shown to 
be effective

– Items included in rule should clinical sense and seem 
appropriate for purpose of rule

– No obvious items should be missing (or their absence 
is adequately explained)

– method for aggregating component variables should 
appear reasonable
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Assessment of Whether Rule Affects Practice (II)

• Providers may not use a rule because:

– Rule is not user-friendly or significantly extends time 
of usual clinical encounter, e.g., rule:

• Includes variables that are not collected in daily 
practice

• Require extensive calculations or use of a 
calculator

– They believe there are practical barriers to its use, 
such as fear of malpractice litigation

Assessment of Whether Rule Affects Practice (III)

• Adoption may depend on age and training

– Brehaut et al. found that older physicians and part-
time working physicians were less likely to be familiar 
with Ottawa ankle rule

– Best predictors whether a rule would be used in 
practice were 1) familiarity acquired during training, 2) 
confidence in usefulness of rule, and 3) user-
friendliness of rule

Impact Analysis *

• Ascertainment of whether a rule is used by clinicians, 
changes or directs physicians' decisions and improves 
clinically relevant process parameters, patient outcomes, 
or cost-effectiveness

• Prepare for impact analysis

– Translate predictions into decisions

– Get clinicians' input

– Anticipate potential obstacles

– Define impact

* Reilly & Evans. Ann Int Med. 2006;144:201-9
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Perform Impact Analysis

• Use appropriate study design

– Ideal design use a cluster randomized trial in which 
physicians or care units are randomized to either use 
of rule or use of "care or clinical judgment as usual"

– Alternate design:  before/after study within same 
physicians or care units (temporal changes may 
compromise validity of this design)

– Randomization of patients rather than physicians or 
care units is not advised

• Learning effects and contamination may lead to a 
reduced contrast between randomization groups

Perform Impact Analysis (II)

• Consider inclusion criteria

• Ideal endpoints are clinically relevant process 
parameters, patient outcomes, and cost-effectiveness

• Use blinding

• Estimate sample size

• Understand potential versus actual impact: efficacy 
versus efficiency

Standards of Evidence for Prediction Rules *

EBM Working Group cited in Reilly & Evans

Level of Evidence Standard of Evaluation Implications

Level 1: Derivation Identification of predictors 
using multivariate model; 
blinded assessment of 
outcomes

Needs validation and 
further evaluation before 
using clinically in actual 
patient care

Level 2: Narrow 
validation

Verification of predictors 
when tested prospectively 
in 1 setting; blinded 
assessment of outcomes

Needs validation in 
varied settings; may use 
predictions cautiously in 
patients similar to 
sample studied

Level 3: Broad 
validation

Verification of predictive 
model in varied settings 
with wide spectrum of 
patients and physicians

Needs impact analysis; 
may use predictions with 
confidence in their 
accuracy
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Standards of Evidence for Prediction Rules *

Level of Evidence Standard of Evaluation Implications

Level 4 Narrow 
impact analysis

Prospective 
demonstration in 1 setting 
that use of prediction rule 
improves physicians’ 
decisions (quality or C-E 
of patient care)

May use cautiously to 
inform decisions in 
settings similar to that 
studied

Level 5 Broad 
impact analysis

Prospective demon-
stration in varied settings 
that use of prediction rule 
improves physicians’ 
decisions for wide 
spectrum of patients

May use in varied 
settings with confidence 
that its use will benefit 
patient care quality or 
effectiveness

EBM Working Group cited in Reilly & Evans

TRIPOD Reporting GUIDELINES

Colins GS, et al. Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD): the TRIPOD Statement. Ann Intern Med. 2015; 
162: 55-63. doi:10.7326/M14-0697

– TRIPOD reporting checklist (distributed on CANVAS)

Moon KGM, et al. Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD): Explanation and Elaboration. Ann Intern Med. 
2015; 162: W1-W73. doi:10.7326/M14-0698

– TRIPOD explanation and elaboration


