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Why Is It So Hard to Communicate the 
Value of a Diagnostic Test? (Part 1)

Henry Glick

02/14/20

(Happy Valentine’s Day)

Outline (This and Next Lecture)

• (Brief) Identify commonly used approaches meant to  
communicate value of diagnostic tests and discuss 
limitations

• Suggest properties an ideal statistic should have

• Review better approaches

– Test threshold graphs

– Decision curve graphs

– Net benefit “football” graphs

– Decision Slope graphs

• Goal: identify a single table or graph that communicates 
value for a wide range of patients

Goal

• Identify a statistic/set of statistics that allow someone to 
obtain “best” outcome:

– When there is no test, by either withholding treatment 
or treating

– When there is a dichotomous test, by either 
withholding treatment, testing and making treatment 
decision based on test result, or treating

– When there is a multi-outcome test, by either 
withholding treatment, testing and making treatment 
decision by use of ”best” test cut-off, or treating

– When there are 2 (dichotomous or multiple outcome) 
tests, by withholding treatment, testing and making a 
treatment decision by use of the “best” test and the 
best cut-off, or treating
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WHAT DO WE MEAN BY “BEST” 
OUTCOME?

If value of correct positive and negative diagnoses are equal (or simply 
can’t determine relative value), maximum accuracy. If relative value can 
be determined, maxiimumNBPT/minimum cost of mistakes

Common Approaches Meant to Communicate 
Diagnostic Test Value

• Comparison between tests

– Largest area under receiver operating characteristic 
(ROC) curve

• Comparison between individual operating points from a 
single test or between multiple tests

– Point on ROC curve closest to (with smallest 
Euclidian distance from) northwest corner of ROC 
graph

– Largest Youden index (sens+spec-1)

– Largest diagnostic odds ratio (sens*spec)/((1-
sens)*(1-spec))

– Point where sens ≈ spec

PROBLEMS WITH COMMON 
APPROACHES
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Limited To Characteristics of Tests

• All 5 approaches limited to consideration of 
characteristics of test (often stable) BUT ignore 
characteristics of patients (often vary)

• Relevant patient characteristics include:

– Pretest probability of disease

– Value of test results among diseased/nondiseased

• Thus listed approaches:

– Do not help with decision to test vs withhold testing

– Either don’t recommend test cut-off (area under ROC 
curve) or always recommend same test cut-off for    
all patients (other 4 approaches)

ANSWER TO QUESTION “WHY IS IT 
SO HARD TO COMMUNICATE THE 
VALUE OF A DIAGNOSTIC TEST?”

Because it depends on characteristics 
of both test and patients in whom test 

is being used!

Accuracy of WBC for Bacteremia

Cut-off

Accuracy

Pre-test Probability

Sens Spec 0.2 0.3 0.4

>∞ 0.000 1.000 0.800 0.700 0.600

>25 0.231 0.970 0.822 0.748 0.674

>20 0.385 0.920 0.813 0.760 0.706

>15 0.654 0.769 0.746 0.735 0.723

>10 0.923 0.430 0.529 0.578 0.627

>0 1.000 0.000 0.200 0.300 0.400
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Method 1: Area Under ROC Curve

• Provides little or no information for choosing among tests 
or operating points

ROC Area: Selection of an Optimal Cut-Off

• Does knowing the test area help us decide which of the 
6 potential cut-offs we should use?

ROC Area: Selection of an Optimal Test

• Test with smaller area can have cut-offs for some 
patients that are superior to all cut-offs from test with 
larger area
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CONCLUSION, AREA UNDER ROC CURVE

• Provides no information for choice of cut-off for a single 
test

– i.e., Provides no information that helps with decision 
to treat no one, use single informative test cut-off 
(dichotomous tests), use one of several informative 
cut-offs (continuous tests), or treat everyone

• Provides little or no information for choice among 
(optimal) tests/cut-offs among multiple tests

Method 2: Point Closest to Northwest Corner

• Sackett et al: “…the point on an ROC curve that is 
closest to this upper left-hand corner is the `best’ cutoff 
in terms of making the fewest mistakes when prevalence 
is at or around 50%...“

Sackett DL, Haynes RB, Guyatt GH, Tugwell P.  Clinical Epidemiology. 
Second Edition.  Boston: Little Brown; 1991.  (also first edition, p. 106) 

“Fewest Mistakes When Prevalence At Or Arouind 50% 

• Simply not true

• Are we always making decisions for patients whose 
pretest probability is “at or around 50%“?

• Should fewest mistakes be our goal or should it be 
lowest cost of mistakes (greatest benefits)?
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Counter Example #1

• Consider 3 operating points on ROC graph: 0,0; 0.5,0.5; 
and 1,1

– All 3 lie on 45º line and have no information (post-test 
probability = pre-test probability)

• 0.5,0.5 is closer to upper left hand corner (0.707 
distance)  than 0,0 and 1,1 (1.0 distance each)

• When prevalence is around 50% (or any other 
percentage for that matter) Is 0.5,0.5 more accurate (i.e., 
makes fewer mistakes) than 0,0 or 1,1?

Counter Example 1: 0.5,0.5 Is Closest, But Isn’t 
Most Accurate

When p=0.5, sens and 1-spec 
pairs of 0,0, 0.5,0.5, and 1,1 all 
have same accuracy (0.5) *

*  0.5, 0.5: (0.5 * 0.5) + (0.5 * 0.5) = 0.5; 0.0, 0.0:  (0.0 * 0.5) + (1.0 * 0.5) = 0.5; 1.0, 0.0: (1.0 *0.5) + (0.0 * 0.5) = 0.5

Counterexample 2

• Consider a 4th point, sens=0.25, 1-spec=0.05, which is 
modestly discriminating with a ROC area of 0.60

• Uninformative point 0.5,0.5 has smaller distance (0.707) 
than does 0.25,0.05 (0.752)

• When prevalence is around 50%, is 0.5,0.5 more 
accurate than 0.25,0.05?
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NO! 0.25,0.05 Further Away But More Accurate

Accuracy for 0.5,0.5 = 0.5
(0.5*0.5)+(0.5*0.5)

Accuracy for 0.25,0.05 = 0.6
(0.5*0.25)+(0.5*0.95)

All Points in Shaded Area Feasible, Further From 
NE Corner, and More Accurate Than 0.5,0.5

More generally, if closest point is on a 45º line 
other than 0/0-1/1, any point in shaded area both 

further away and more accurate
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Conclusions:
Point closest to northwest corner of 

ROC curve need not maximize 
accuracy when p=0.5

Not sure why accuracy at p=0.5 is 
correct statistic

Not sure why we aren’t maximizing 
NBPT instead of accuracy

Method 3: Youden Index (sens + spec - 1) *

• Unlike Sackett, Youden Index does identify test cut-off 
that makes “the fewest mistakes when prevalence is at 
or around 50%“

Youden WJ. Index for rating diagnostic tests. Cancer. 1950; 3: 32-35.

Youden Index Example

• Youden Index succeeds because Youden Index = 
(2*Accuracyp=0.5) – 1

• Accuracyp=0.5 = (p*sens) + ((1-p)*spec where p=0.5

– Multiply through by 2; subtract 1 from both sides

• Maximizing linear transformation of accuracyp=0.5

necessarily maximizes accuracyp=0.5

Sens, Spec
Youden
Index Accuracy

0.9, 0.5 0.4 0.7 = (0.9 × 0.5) + (0.5 × 0.5)

0.8, 0.59 0.39 0.695 = (0.8 × 0.5) + (0.59 × 0.5)

0.59, 0.8 0.39 0.695 = (.59 × .5) + (.8 × 0.5)
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What If Prevalence ≠ 0.5 (e.g., P = 0.4)?

• If, however, p can take on values other than 0.5, accuracy 
formula (or if linear transformations are preferred,  
(2*accuracy – 1)) should be used to replace Youden index

• But if accuracy assessment is not limited to a single pre-
test probability, would no longer have 1 statistic per cut-off

– Instead would need multiple prevalence-dependent 
statistics

Sens, Spec
Youden
Index Accuracy

0.9, 0.5 0.4 0.66 = (0.9 × 0.4) + (0.5 × 0.6)

0.8, 0.59 0.39 0.674 = (0.8 × 0.4) + (0.59 × 0.6)

0.59, 0.8 0.39 0.716 = (.59 × .4) + (.8 × 0.6)

Conclusions:

Even though Youden index has limited 
use as a value metric, it’s still cited in 

literature (686 Ovid references 
between 2015-2020

Not sure why linear transformation of 
accuracy at p=0.5 is correct statistic

Not sure why we’re not maximizing 
NBPT rather than accuracy measures

Method 4: Diagnostic Odds Ratio (DOR)

• DOR = (sens*spec)/((1-sens)*(1-spec))

• As with Youden index, DOR is independent of pre-test 
probability

• However,

– For test with dichotomous results, always 
recommends testing

– For test with multiple possible cut-offs, always 
identifies 1 that is  best for all patients

– For multiple tests (with one cut-off for each), always 
identifies 1 that is best for all patients

• But 2x2 table with largest DOR need not maximize 
accuracy for all pre-test probabilities of disease and 
need not have largest NBPT
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Diagnostic Odds Ratio Example

• Suppose test 1 has a sens of 0.6 and a spec of 0.8 while 
test 2 has a sens of 0.9 and a spec of 0.5

• Test DORs equal:

– Test 1 DOR = 6 ((0.6*0.8)/(0.4*0.2))

– Test 2 DOR = 9 ((0.9*0.5)/(0.1*0.5))

• Based on larger DOR choose test 2

Larger DOR Not Necessarily Mean More Accurate

• Test 1 more accurate for p<0.5; Test 2 more accurate for 
p>0.5; accuracy identical for p=0.5
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Conclusions:

Even though DOR has limited use as a 
value metric, it’s still cited in literature 
(928 Ovid references between 2015-

2020

Only maximizes accuracy for some 
pretest probabilities

Not sure why we’re not maximizing 
NBPT rather than accuracy
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Method 5: Point Where Sens = Spec

• 0.5, 0.5 is one of points where sens=spec

• (In response to method 2,) we’ve already seen that this 
point needn’t maximize accuracy

PROPERTIES OF IDEAL STATISTIC

Properties of an Ideal Statistic (Ideal Statistics)

1) Single statistic that identifies best test for all patients, no 
matter what their pretest probability (p) nor what 
treatment threshold (p*) applies to them

– Ideal OBTAINABLE statistic(s) – single graph or 
table that provides statistics for all relevant pretest 
probabilities and treatment thresholds

2) Statistics are characteristics of tests whose properties 
have same stability (instability) as sensitivity, specificity, 
and likelihood ratios
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Properties of an Ideal Statistic (Ideal Statistics) (2)

3) Statistics independent of development of new cost-
effective treatments

– Cost-effectiveness should affect p* that is appropriate 
for a particular patient, but not height of curve at p*

4) Statistics allow determination of complete ranking of 
testing strategies

– e.g., that testing is superior to treating no one which 
is superior to treating everyone

5) Statistics allow determination of relative (or absolute) 
difference in outcomes among testing strategies

– Latter in part to address issues related to inclusion of 
cost of test

Properties of an Ideal Statistic (Ideal Statistics) (3)

6) Statistics unaffected by pre-test probability in sample 
used to develop test

– “…index is independent of the relative sizes of the 
control and diseased groups” (Youden)

– True of any statistic based on sensitivity and 
specificity or LRs

7) Statistics unaffected by treatment threshold

8) Possible to calculate a standard error for statistics 
(Youden)

BETTER METHODS
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FUNDAMENTALS

Treatment Threshold (p*)

• p* where value of no Rx equals value of Rx:

D-

D- D+

O
 p* = 

O O




  
Same p* we’ve 
seen before

Additional Transformation †

• (Important for Vickers and Elkin’s decision curves and 
net benefit football)

• Refer to ΔOD- / ΔOD+ as “ratio of differences in 
outcomes” or the “ratio of differences”

– When either of the 2 ratios less than 1 indicate that 
the difference in outcomes among persons with 
disease is greater than the difference in outcomes 
among persons without disease

– For ratios greater than 1, reverse is true

† Derivation in appendix

D-

D+

Op*
  = 
1-p* O





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Relative Value?

• Previously noted DON’T need to know exact magnitudes 
of differences in outcomes

– Instead only require information about relative cost of 
differences in outcomes

• i.e., can set ∆OD+ equal to 1 and express ∆OD- as a 
multiple of ∆OD+

• e.g., ∆OD- is half ∆OD+ (∆OD- = 0.5 and ∆OD+ = 1)

• Issues arise for incorporating testing cost when Δs 
incorporated as relative rather than absolute terms?

– i.e., need relative testing costs

D+ D-

p*
If O   = 1:  = O

1-p*
 

Expected Outcome of Testing

• p × sens × OD+T+ + p ×(1-sens) × OD+T- +

(1-p) × spec × OD-T- + (1-p) × (1-spec) × OD-T+

• Test cost?     [-Tc]

Better Method 1:
Pauker and Kassirer Test Thresholds

Pauker SG, Kassirer JP. The threshold approach to clinical decision 
making. N Engl J Med. 1980; 302: 1109-17.
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Do Nothing / Test and Test / Treat Thresholds

• In 1980 Pauker and Kassirer used equations to define  
do nothing/test and test/treatment thresholds (here 
referred to more generally as “test thresholds”) 

– Early graphical method for describing value of a test

• Graph provides information about ranges of probabilities 
for which treating no one, testing, and treating everyone 
has greatest net benefit

• Typical graph compares these 3 strategies alone, but 
possible to evaluate more than 3 strategies (with ranges 
of probabilities where each of 3+ strategies has largest 
net benefit)

Test Threshold Graph (We’ve Seen This Before)

No test-

No treat

Test and Treat if

Test result is positive
Treat

0 Probability of disease 1

^
TT

^
TTT

Do Nothing / Test Threshold

• Defined by setting expected value of treating no one 
equal to expected value of testing and solving for p

• Testing cost?

p×OD+T- + (1-p)×OD-T- = p × sens × OD+T+ + p ×(1-sens) × OD+T-

+ (1-p) × spec × OD-T- + (1-p) × (1-spec) × OD-T+
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Solving for Do Nothing / Test Threshold

• Without testing Cost (e.g., testing is costless)

• With (positive) testing cost

• Except for addition of test characteristics and Tc, 
equations defining ptt same as equation defining p*

• Tc enlarges region where no test/no treat is preferred

 
 

D-
tt

D- D+

1-spec  O
p  = 

1-spec  O  + sens O  


 

 
 

D- c
tt

D- D+

1-spec  O  + T
p  = 

1-spec  O  + sens O  


 

Test / Treatment Threshold

• Defined by setting expected value of testing equal to 
expected value of treating everyone and solving for p

• Testing cost?

p × sens × OD+T+ + p ×(1-sens) × OD+T- + (1-p) × spec × OD-T-

+ (1-p) × (1-spec) × OD-T+ = p×OD+T+ + (1-p)×OD-T+

Solving for Test / Treatment Threshold

• Without testing Cost (e.g., testing is costless)

• With testing cost

• Except for addition of test characteristics and Tc, 
equations defining pttt same as equation defining p*

• Tc enlarges region where treatment is preferred

 
D-

ttt
D- D+

spec O
p  = 

spec O  + 1-sens  O  


 

 
D- c

ttt
D- D+

spec O  - T
p  = 

spec O  + 1-sens  O  


 
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Generalized Threshold Equations

• Threshold for any pair of (costless) testing strategies:

• Threshold for any pair of strategies (with test cost):

• Formulae identify pt but don’t indicate which test is better 
when p greater than or less than pt

– Strategy with larger sensitivity superior for p > pt

– Strategy with smaller sensitivity superior for p < pt

 
   

1 2 D-
t

1 2 D- 2 1 D+

spec  - spec  O
p  = 

spec  - spec  O  + sens  - sens  O  


 

   
   

1 2 D- c2 c1
t

1 2 D- 2 1 D+

spec  - spec  O  + T  - T
p  = 

spec  - spec  O  + sens  - sens   O  


 

Test Threshold Graph

• Strength: reports most net beneficial diagnostic strategy 
for any pretest probability of disease

• Weakness: A single graph assumes a constant set of 
values for ∆OD-, ∆OD+, and test cost

– Requires separate graphs as values change

– Thus, no single graph or table provides statistics      
for all relevant pretest probabilities and treatment 
thresholds

No test-

No treat

Test and Treat if

Test result is positive
Treat

0 Probability of disease 1

^
TT

^
TTT

Conclusions:

Test Thresholds identify strategies with 
maximum NBPT for full range of 

probability of disease

But different combinations of ∆OD-, 
∆OD+, and test cost require different 

graphs
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Better Method 2:
Vickers and Elkin’s Decision Curves

Vickers AJ, Elkin EB. Decision curve analysis: A novel method for 
evaluating prediction models. Med Decis Making. 2006; 26: 565-74.

Decision Curves (Vickers and Elkin, 2006)

• Plot net benefits of a positive test on graph whose X axis 
represents p* and whose Y-axis represents net benefits 
of positive test

Decision Curves (2)

• Originally proposed to compare value of different 
prediction rules

• While some differences may exist between valuation of 
prediction rules vs diagnostic tests, fundamental 
principles unchanged



19

Vickers and Elkin’s X Axis (p*)

• In theory V&E’s p* same as our p*

– Represents probability above which treatment has a 
greater net benefit than withholding treatment and 
below which withholding treatment has a greater net 
benefit than treatment

– Defined as ΔOD- / (ΔOD- + ΔOD+)

– Required if optimal test is to maximize net benefit of a 
positive test

Vickers and Elkin’s X Axis (p*) (2)

• But Vickers and Elkin aren’t so committed to our 
definition

– Express concern (as have previous members of our 
class) about estimating p*

– Discuss ranges of p* and clinicians’ subjective 
judgments as reasonable values

Vickers and Elkin’s Y Axis (NBPT or NB)

• As we’ve previously defined it, net benefit from a positive 
test equals:

NB = p × sens × ∆OD+ - (1-p) × (1-spec) × ∆OD-

• This version of NBPT equation does not allow plotting of 
NB as a function of p*
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Vickers and Elkin’s Y Axis (NBPT or NB)

• Vickers and Elkin’s substitute following equation for NB:

• where N equals number of individuals in study sample, 
true positive count equals N p sens and false positive 
count equals N (1-p) (1-spec)

V&E INSIGHT: MAKE NB A FUNCTION OF P*

Which is possible because P* defined by cost 
differences

true positive count false positive count p*
NB =  -  

N N 1-p*

Alternative Version of Vickers and Elkins Equation

    p*
NB = p sens - 1-p  1-spec  

1-p*

• Substitute N p sens for true positive count

• Substitute N (1-p) (1-spec) for false positive count

• Cancel N/N

• Begins to look similar to equations we use

true positive count false positive count p*
NB =  -  

N N 1-p*

Alternative Version of Vickers and Elkins Equation (2)

• Previously indicated that (derivation in appendix slides)

• Substitute ΔOD- / ΔOD+ for p*/1-p*

• Divide both ΔOD+ and ΔOD- by ΔOD+ (allows cancellation 
of ΔOD+ and makes ΔOD- a relative value of ΔOD+)

• Set ΔOD+ equal to 1 and multiply p sens by 1 (i.e., by 
ΔOD+

• Resulting equation matches our original formula for 
calculating NBPT (see ROC curve lecture notes)

D-

D+

Op*
  = 
1-p* O






   D+ D-NB = p sens O  - 1-p  1-spec  O 
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Formula for Treat No One, Test, and Treat All

• Assume p = 0.2; treat no one sensitivity = 0.0; treat no 
one specificity = 1.0; test sensitivity = 0.75; test 
specificity = 0.85; treat everyone sensitivity = 1.0; treat 
everyone specificity = 0.0

 

 

 

Treat No one
p*

   NB = 0.2 * 0  - 0.8 * 0 * 
1-p*

Test
p*

   NB = 0.2 * 0.75  - 0.8 * 0.15 * 
1-p*

Treat All
p*

   NB = 0.2 * 1.0  - 0.8 * 1 * 
1-p*




 




 




 

Decision Curve Graph (p=0.2)

NB, treat no one;  NB, Treat everyone;  NB, test

• If p=0.2, treat 
everyone if p* <
.0685

• Test if .0685 < p* <
.5556

• Treat no one if p* >
.5556

Allows Calculation of NB for Any Operating Point

NB, treat no one;  NB, Treat everyone;  NB, testNB, treat no one;  NB, Treat everyone;  NB, test

• If ∆OD- = .333 and 
∆OD+ =  1, then p* = 
.25 and p*/(1-p*) = 
.333

• NB is .11 for testing, 
0 for treating no 
one, and -.067 for 
treating everyone
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Decision Curves and Pre-Test Probability

• Prior decision curve plotted for p=0.2

• Curve does not describe net benefits for other pre-test 
probabilities

– Shapes of curves for other probabilities of disease, 
can change dramatically

– No simple transformation that allows use of one curve 
to construct other curves

• e.g., cannot simply multiply 20% curve times ratio 
of probabilities of disease used to construct the 
two sets of curves

– i.e., to derive 70% curve from 20% curve, can’t 
simply multiply times .7/.2

Decision Curve Graph (p=0.7)

• If p=.7, treat 
everyone if p* <
.4070

• Test if .4070 < p* <
.9211

• Treat no one if p* >
.9211

NB, treat no one;  NB, Treat everyone;  NB, test; NB curves for p=0.2

• If ∆OD- = .333 and 
∆OD+ =  1, then p* = 
.25 and p*/(1-p*) = 
.333

• At p=0.25. both 
magnitude and 
order of Rx values 
change!!

• NB is .60 for 
treating everyone, 
.51 for testing, and 
0 for treating no one

NB, treat no one;  NB, Treat everyone;  NB, test; NB curves for p=0.2

Allows Calculation of NB for Any Operating Point
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Conclusions:

Decision Curves identify strategies with 
maximum NBPT for full range of 

(relative) costs

But different values of p require 
different graphs

Better Method 3
Net Benefit Football

Net Benefit Football

• Recommended that reporting (relative) difference in 
value of test strategies is one of the properties for an 
ideal statistic, but…

• Can provide information about value for all p* (i.e., cost 
ratios) and all probabilities of disease in single graph if 
change Y-axis from NB to probability of disease

• Net benefit football would have treatment thresholds (p*) 
on X-axis, pretest probabilities of disease on Y-axis, and 
graph would identify p*/probability pairs for which the 
different strategies have the largest net benefit
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• When test sensitivity=0.75 and test specificity=0.85, treat all in 
area with horizontal lines, test in area with cross-hatched 
lines, and treat no one in area with vertical lines

Net Benefit “Football”, 3 Diagnostic/Treament Stategies

Football Based on Test Thresholds

Start With Do Nothing / Test Threshold Equation

• Without testing Cost (e.g., testing is costless)

• Divide numerator and denominator of threshold equation 
by ∆OD+

• Yields ∆OD-/∆OD+ in numerator and ∆OD-/∆OD+ and 1 in 
the denominator

• On slide 34, we showed that ∆OD-/∆OD+ = p*/(1-p*) which 
we can substitute into the equation

 
 

D-
tt

D- D+

1-spec  O
p  = 

1-spec  O  + sens O  


 
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Revised Thresholds Equations

• Resulting Do nothing/test threshold (excluding testing 
Cost)

• Resulting Test / Treatment threshold (excluding testing 
cost)

 
  tt

1-spec  p* / (1-p*)
p  = 

1-spec  p* / (1-p*)  + sens 

   ttt

spec p* / (1-p*)
p  = 

spec p* / (1-p*)  + 1-sens  

Generalized Football Threshold Equations

• Threshold (pt) for any pair of (costless) testing strategies 
(including all results negative and all results positive):

• Formula identifies pt for different values of p* and p, but 
doesn’t indicate which test falls on which side of pt

– Strategy with larger sensitivity superior for combinations 
of p* and p that fall to the left and above boundary

– Strategy with smaller sensitivity superior for 
combinations of p* and p that fall to right and           
below boundary

 

   

2 1

t

2 1 1 2

p*
spec  - spec  

1-p*
p  = 

p*
spec  - spec   + sens  - sens  

1-p*

WBC Net Benefit “Football”
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Football Pluses and Minuses

• Pluses

– Single graph for each test

– Accounts for different treatment thresholds

– Accounts for different pretest probabilities

– Stable characteristics of test  (if test cost excluded)

– Independent of development of new therapies

• Minuses

– ? Doesn’t report a complete ranking of test strategies ?

– Doesn’t report (relative) difference in value of test 
strategies

• Plus and minus

– Can incorporate test cost, but shape of of nothing    
and treat all regions change when test cost changes

Equation Appendix

p* = ΔOD- / (ΔOD- + ΔOD+)

D+Rx+ D-Rx+

D+Rx- D-Rx-

D+Rx+ D-Rx+ D+Rx- D-Rx-

D+Rx+ D+Rx-

Value of treating everyone

p O  + (1-p) O

Value of treating no one

p O  + (1-p) O

Set values equal and solve for p*

p O  + (1-p) O  = p O  + (1-p) O

p O  - p O  = 

   

 

D-Rx- D-Rx+

D+Rx+ D+Rx- D-Rx- D-Rx+

D+ D-

D+ D- D-

D- D+ D-

D- D+ D-

D-

D- D+

 (1-p) O  - (1-p) O

p O  - O  =  (1-p) O  - O

p O  = (1-p) O

p O  = O  - p O

p O  + p O  = O

p ΔO  + ΔO  = O

O
p* = 

ΔO  + ΔO

 

  

  




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p*/(1-p*) = ΔOD-/ΔOD+

 

 

 

D-

D- D+

D- D+ D-

D- D+ D-

D+ D- D-

D+ D-

D-

D+

Start with definition of p*:

O
p* = 

ΔO  + ΔO

p* ΔO  + ΔO  = O

p* ΔO  + p* ΔO  = O

p* ΔO  = O  - p* ΔO

p* ΔO  = O  1 - p*

Op*
 = 

1 - p* ΔO
 













DS = ((1-p)/p) × (p*/(1-p*))

   

   

D-

D+

D- D+

D- D+

O(1-p)
DS =   

p O

In Appendix slide 2, showed that O / O  = p*/(1-p*)

Substitute p*/(1-p*)  for O /O

(1-p) p*
DS =   

p 1-p*






 




