COST-EFFECTIVENESS ANALYSIS

LDI Health Economics and Management Workshop

Sponsored by Janssen Pharmaceuticals, Inc.

Henry Glick, Ph.D. www.uphs.upenn.edu/dgimhsr

October 5, 2016

Outline

- · Introduction to cost-effectiveness analysis (CEA)
- Cost-effectiveness study designs
- · Cost-effectiveness methods overview
- Choice criteria for CEA

Outcomes Research

- Evaluates outcomes of medical therapies (potentially including costs) and their impacts on people, organizations, and society
- Therapies can include drugs, devices, procedures, or broader programmatic or system interventions
- Outcomes can include mortality, morbidity, functional status, mental well-being, other aspects of health-related quality of life, cost, etc.

Cost-Effectiveness Analysis

- Outcomes research specifically focused on economic value of therapies / delivery systems / behavioral interventions
- Multidisciplinary methods
 - Economics
 - Epidemiology
 - Medicine
 - Pharmacy
 - Decision sciences
 - Operations research
 - Statistics / biostatistics
 - Other social sciences

Economic Messages

- · Therapy is good/bad value
- · Budget impact
- Burden of illness
 - Often flag waving: "This disease is important..."
- Specific messages addressed depend in part on:
 - Disease and therapy under evaluation
 - Other therapies available to treat condition
 - Interest of regulatory bodies, providers, payers, and patients

Cost-Effectiveness Study Designs

- · Clinical trials
 - Economic evaluation in clinical trials widespread
 - Little to no selection bias, but potential issues of generalizability
- · Observational studies
 - Often more generalizable, but problems with selection bias
- · Decision models
 - Often used to address pressing questions for which direct data are not available

 - Shares strengths and weaknesses or source _____
 Added uncertainties related to combining data from
 With sources and projection beyond the data

Decision Analysis Approaches

- · Most frequently used healthcare decision analytic approaches
 - Decision trees
 - Markov models
- · Can be used:
 - To analyze data from trial
 - To perform analyses that incorporate data from trial(s) plus observational data
 - (Most frequently) To perform analysis when trial data are unavailable

Cost-Effectiveness Methods Overview

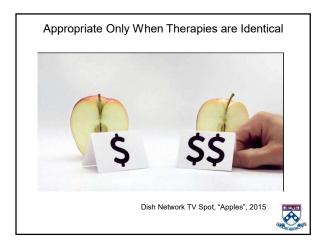
Economic Evaluation Methods Overview

- Types of analyses
- Steps in economic evaluation
- Types of outcomes
- Perspective

Types of Analyses

Types of Analysis

- Cost identification
- Cost-effectiveness / cost-utility
- Cost-benefit
- Generally distinguished by:
 - Outcomes included: e.g., costs alone vs costs and effects
 - How outcomes are quantified: e.g., as money alone or as health and money


Cost Identification / Cost Minimization / Cost-Cost Analysis

Cost-Identification, etc.

- Estimates difference in costs between therapies, but not difference in other outcomes
- Commonly conducted when no difference observed in effectiveness
 - "As no statistical significant difference among the mean QALYs gained with the different [hormonal therapies] was detected (p = 0.12), CUA was replaced by a cost minimization analysis." Lazarro et al. Archivio Italiano di Urologia, Andrologia. 2007;79:104-7

Is failure to detect a difference same as a demonstration of equivalence?

Cost-Effectiveness Analysis

- Estimates differences in costs and differences in outcomes between interventions
- Costs and outcomes measured in different units
- Costs usually measured in money terms; outcomes in some other units
- · Incremental cost-effectiveness ratio

 $\frac{\text{Costs}_1 - \text{Costs}_0}{\text{Effects}_1 - \text{Effects}_0}$

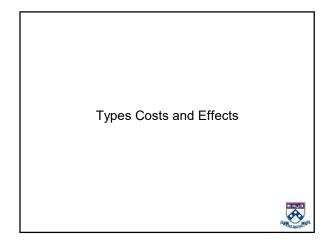
· Most used form of economic evaluation


Cost-Effectiveness A Relative Measure

- Cost-effectiveness is a *relative* measure; no program is
 "cost-effective" in abstract
 - Results meaningful in comparison with:
 - A predetermined standard
 - e.g., \$50,000 per quality-adjusted year of life saved
 - Other accepted and rejected interventions (e.g., a league table)

What Is Maximum Acceptable WTP?

- · US Gov't
 - EPA: 9.1 M / life (~222K / undiscounted YOLS)
 - FDA: 7.9 M / life (~176K / undiscounted YOLS)
 - DOT: 6 M / life (~133K / undiscounted YOLS)
- Australia: \$AU 42K 76K /YOLS
- Italy: €60,000/QALY
- Netherlands: €80 000/QALY
- Sweden: SEK 500,000 (€54,000) / QALY
- UK: £20 30K / QALY
- WHO report: 3 times GDP per DALY



Cost-Benefit Analysis

- Estimates differences in costs and differences in benefits in same (usually monetary) units
- As with cost-effectiveness, requires a set of alternatives
- Net benefit is preferred cost-benefit result

 (Benefit₁ Benefit₀) (Cost₀ Cost₀)

Types of Costs

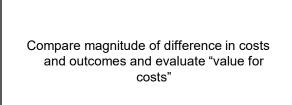
- · Direct: medical or nonmedical
- · Time costs: Lost due to illness or to treatment
- · Intangible costs
- Types of costs included in an analysis depend on:
 - What is affected by illness and its treatment
 - What is of interest to decision makers
 - e.g., a number of countries' decision makers have indicated they are not interested in time costs

What Effectiveness Measure?

- Can calculate a ratio for any outcome
 Cost per toe nail fungus day averted
- For cost-effectiveness ratios to be an informative, must know willingness to pay for outcome
 - In many jurisdictions, quality-adjusted life year (QALY) is recommended outcome of costeffectiveness analysis

QALYS / DALYS

- Economic outcomes that combine preferences for both length of survival and quality into a single measure
- Help us decide how much to pay for therapies that:
 Save fully functional lives/life years


vs

 Save less than fully functional lives/life years
 e.g., heart failure drug that extends survival, but extra time spent in NYHA class III

VS

- Don't save lives/life years but improve function
 - e.g., heart failure patients spend most of their remaining years in class I instead of class III

How do we choose among multiple therapies?

Co	olorectal C	ancer Screening				
1 11	0	ategies have the following expectancies:				
Treatment	Cost	YOLS				
S1 Sig Q10	1290	17.378				
S2 Sig Q5	1535	17.387				
S3 U+Sig, Q10	1810	17.402				
S4 C, Q10	2030	17.396				
S5 U+Sig, Q5	2035	17.407				
Frazier AL, et al. JAMA. 2000;284:1954-61.						
 What calcula between ther 	0	help us make a choice				

Divide a there resulting ratio		by its c	outcome; cor	mpare	
Treatment	Cost		YOLS		C/Y
S1 Sig Q10	1290	÷	17.378	=	74.23
S2 Sig Q5	1535	÷	17.387	=	88.28
S3 U+Sig, Q10	1810	÷	17.402	=	104.01
S4 C, Q10	2030	÷	17.396	=	116.69
S5 U+Sig, Q5	2035	÷	17.407	=	116.91

Diagnosti Treatment	c Evaluatior Cost	#Correct Diagnoses	Cost/Correct Diagnosis
Rx	5368.47	74	72.55
Prevention	5944,15	96	61.92
Early Detection	5442.17	96	56.69

D	Dividing a Therapy's Costs by Its Effects is "Generally Uninformative"						
	Cost	Effect	Ratio				
Exampl	Example 1						
Rx1	2,800	0.28	10,000				
Rx2	5,800	0.29	20,000				
Exampl	e 2						
Rx1	2,800	0.28	10,000				
Rx2	11,200	0.56	20,000				

D	•	apy's Costs by li ally Uninformativ				
	Cost	Effect	Ratio			
Example 1						
Rx1	2,800	0.28	10,000			
Rx2	5,800	0.29	20,000			
	(5,800-2,80	0) / (0.29-0.28) = 3	00,000			
Exampl	e 2					
Rx1	2,800	0.28	10,000			
Rx2	11,200	0.56	20,000			
	(11,200-2,8	00) / (0.56-0.28) =	30,000			

Mistake #2					
 Calculate ratios for all therapies versus S1; compare resulting ratios 					
Treatment	Cost	∆Cost	YOLS	ΔYOLS	ACER
S1 Sig Q10	1290		17.378		
S2 Sig Q5	1535	245	17.387	.009	27,222
S3 U+Sig, Q10	1810	520	17.402	.024	21,667
S4 C, Q10	2030	740	17.396	.018	41,111
S5 U+Sig, Q5	2035	745	17.407	.029	25,690
Correctly referred to as average cost-effectiveness ratios					

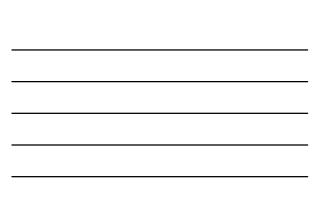
Average Cost-Effectiveness Ratio If these were the correct ratios, what should we conclude? 					
Treatment	Cost	ΔCost	YOLS	ΔYOLS	ACER
S1 Sig Q10	1290		17.378		
S2 Sig Q5	1535	245	17.387	.009	27,222
S3 U+Sig, Q10	1810	520	17.402	.024	21,667
S4 C, Q10	2030	740	17.396	.018	41,111
S5 U+Sig, Q5	2035	745	17.407	.029	25,690

What is Good Value?

- The "cost-effective" strategy delivers the largest health outcome that we are still willing to pay for
- Why don't the average ratios provide this information?

What's Wrong with the Average Cost- Effectiveness Ratio					
Treatment	Cost	∆Cost	YOLS	ΔYOLS	ACER
S1 Sig Q10	1290		17.378		
S3 U+Sig, Q10	1810	520	17.402	.024	21,667
S5 U+Sig, Q5	2035	745	17.407	.029	25,690

- 25,690 for U+Sig, Q5 gives credit for the 520 we are already spending and the .024 YOLs we are already receiving from S3
- Compared to S3, we are spending almost 50% more for S5 and receiving only about 20% more of the outcome


Incremental Cost-Effectiveness Ratio					
 Basic idea for correct ratio: calculate ratio for S2 vs S1, S3 vs S2, S4 vs S3 and S5 vs S4 					
Treatment	Cost	ΔCost	YOLS	ΔYOLs	ICER
S1 Sig Q10	1290		17.378		
S2 Sig Q5	1535	245	17.387	.009	27,222
S3 U+Sig, Q10	1810	275	17.402	.015	18,333
S4 C, Q10	2030	220	17.396	006	-36,667
S5 U+Sig, Q5	2035	5	17.407	.011	455

· But not always right

Г

STREET, BOB

Treatment	Cost	YOLS	_
S1 Sig Q10	1290		
S2 Sig Q5	1535	245	
S3 U+Sig, Q10	1810	520	
S4 C, Q10	2030	740	
S5 U+Sig, Q5	2035	745	_
Frazier AL, et al. JAMA. 200	00;284:1954-61.		

Problem 2						
 Never want to spend more and obtain less outcome as in S4 vs S3. S4 is strongly dominated by S3 						
Treatment	Cost	Δ	YOLS	Δ	ICER	
S1 Sig Q10	1290		17.378			
S2 Sig Q5	1535	245	17.387	.009	27,222	
S3 U+Sig, Q10	1810	275	17.402	.015	18,333	
S4 C, Q10	2030	220	17.396	006	-36,667	
S5 U+Sig, Q5	2035	225	17.407	.005	45,000	
S4 should be eliminated from consideration for adoption						

Problem 3 Don't want to buy less outcome for a higher cost per unit of outcome as in S2 vs S3: S2 weakly dominated by S3 						
Treatment	Cost	Δ	YOLS	Δ	ICER	
S1 Sig Q10	1290		17.378			
S2 Sig Q5	1535	245	17.387	.009	27,222	
S3 U+Sig, Q10	1810	275	17.402	.015	18,333	
S4 C, Q10	2030	220	17.396	006	S-Dom	
S5 U+Sig, Q5	2035	225	17.407	.005	45,000	

Problem 3 S2 should be eliminated from consideration for adoption 					
 Must recalculate ratio for S3 vs S1 					
Treatment	Cost	Δ	YOLS	Δ	ICER
S1 Sig Q10	1290		17.378		
S2 Sig Q5	1535	245	17.387	.009	₩ Dom
S3 U+Sig, Q10	1810	520	17.402	.024	21,667
S4 C, Q10	2030	220	17.396	006	S Dom
S5 U+Sig, Q5	2035	225	17.407	.005	45,000

Steps for Calculating ICER

- Step 1: Rank order therapies in ascending order of either costs or outcomes (final ordering of nondominated therapies unaffected by variable chosen)

 Already correctly ordered by cost
- Step 2: Eliminate therapies that are strongly dominated (i.e., have increased costs and reduced effects compared with at least one other alternative
 - S4 is strongly dominated by S3
- Step 3: Compute incremental cost-effectiveness ratios for each adjacent pair of remaining outcomes (e.g., between options 1 and 2; between options 2 and 3; etc.)

Steps for Calculating ICER (2)

- If resulting ratios are ranked from lowest to highest, can skip to step 6. If not....
- Step 4: Eliminate therapies that are less effective (costly) but have a higher cost-effectiveness ratio than next higher ranked therapy (weakly dominated/extended dominance)
 - "S2 is weakly dominated by S3"; "eliminate S2 because of extended dominance by S3"

Steps for Calculating ICER (3)

- Step 5: Recalculate ratio for next higher ranked therapy
 vs next lower ranked therapy
 - E.g., S3 vs S1
 - Recalculated ratio will always be higher than original ratio, but can't be higher than weakly dominated ratio
 E.g., 27,222 > 21,666 > 18,333
 - If resulting ratios still not ranked from lowest to highest, may need to repeat evaluation of weakly dominated therapies several times
 - After S2 is eliminated, ratios are ordered from lowest to highest
- Step 6: Identify acceptable ratio

Reduced TableCandidates for adoption include S1, S3, and S5						
Treatment	Cost	Δ	YOLS	Δ	ICER	
S1 Sig Q10	1290		17.378			
S3 U+Sig, Q10	1810	520	17.402	.024	21,667	
S5 U+Sig, Q5	2035	225	17.407	.005	45,000	
 If W < 21667, adopt S1 If W ≥ 21,667 and <45,000, adopt S3 If W≥ 45,000, adopt S5 						

Take Home Messages

- Decision making using cost-effectiveness ratios requires attention to incremental cost-effectiveness ratios
- To make decisions using these ratios, they must be compared to:
 - A predefined standard (i.e., an acceptability criterion) against which they can be compared (e.g., \$50,000 per year of life saved might be considered largest acceptable ratio), or
 - Other accepted and rejected interventions (e.g., against league tables)

