Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations
ISPOR 8th Asia-Pacific Conference
September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

Outline

- Part 1. Univariate analysis
 - Policy relevant parameter for CEA
 - Cost data 101
 - T-tests
 - Response to the violation of normality
 - Primer on log cost
 - Why do different statistical tests lead to different inferences?
- Part 2. Multivariable analysis

Policy Relevant Parameter for CEA (I)

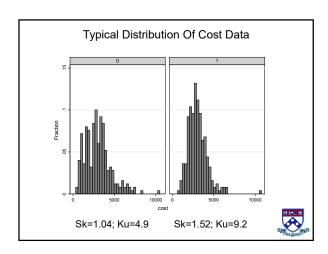
- In welfare economics, projects cost-beneficial if winners from any policy gain enough to be able to compensate losers and still be better off themselves
- Decision makers interested in total program cost/budget (N * arithmetic/sample mean)
- Policy relevant parameter quantifies how much losers lose, or cost, and how much winners win, or benefit

Policy Relevant Parameter for CEA (II)

- Other summary statistics such as median cost may be useful in describing the data, but do not provide information about the difference in cost that will be incurred or the cost saved by treating patients with one therapy versus another
 - They thus are not associated with social efficiency
- Lack of symmetry of cost distribution does not change fact that we are interested in arithmetic mean
- Evaluating some other difference, be it in medians or geometric means, simply because cost distribution satisfies assumptions of test statistics, may be tempting, but does not answer question being asked

Cost Data 101

- · Commonly right-skewed (i.e., long, heavy, right tails)
- · Data tend to be skewed because:
 - Can have 0 costs, but not negative costs
 - Most severe cases may require substantially more services than less severe cases
 - Certain very expensive events occur in relatively small number of patients
 - A minority of patients are responsible for a high proportion of health care costs

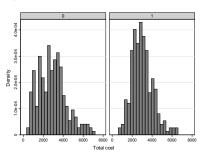


Typical Distribution Of Cost Data (II)

- · Heavy tails vs. "outliers"
 - Distributions with long, heavy, right tails will have larger sample means than medians

Problem Not Related Solely to "Outliers"

• Distribution when 5 observations with cost > 7200 (>3SD) are eliminated



Means and Medians When 5 Observations with Cost > 7200 are Eliminated

	Full Sample		Trimi	med *
	Group 0	Group 1	Group 0	Group 1
Mean	3015	3040	2927	3010
Median	2826	2901	2816	2885

 * p = 0.003 and 0.000 for nonnormality of groups 0 and 1, respectively

Univariate And Multivariable Analyses Of Economic Outcomes

- Analysis plans for economic assessments should routinely include univariate and multivariable methods for analyzing the trial data
- Univariate analyses are used for the predictors of economic outcomes
 - Demographic characteristics, clinical history, length of stay, and other resource use before entry of study participants into the trial
- Univariate and multivariable analyses should be used for the economic outcome data
 - Total costs, hospital days, quality-adjusted life years

Univariate Analysis Of Costs

- · Report:
 - Arithmetic means and their difference
 - Economic analysis is based on differences in arithmetic mean costs (because n x mean = total), not median costs; thus means are the statistic of interest
 - Measures of variability and precision, such as:
 - Standard deviation
 - Quantiles such as 5%, 10%, 50%,...
 - An indication of whether or not the difference in arithmetic means
 - Occurred by chance and is economically meaningful

Univariate Analysis: Parametric Tests Of Raw Means

- · Usual starting point: T-tests and one way ANOVA
 - Used to test for differences in arithmetic means in total costs, QALYS, etc.
 - Makes assumption that costs are normally distributed
 - Normality assumption routinely violated for cost (and preference score) data, but t-tests have been shown to be robust to violations of this assumption when:
 - Samples moderately large
 - Samples are of similar size and skewness
 - Skewness is not too extreme
 - What is meant by "moderately large," "similar size and skewness," and "not too extreme"?

Responses To Violation Of Normality Assumption

- Adopt nonparametric tests of other characteristics of distribution that are not as affected by nonnormality of distribution ("biostatistical" approach)
- Transform data to approximate normal distribution (e.g., Stata "ladder" command) ("classic econometric" approach)
- Adopt tests of arithmetic means that avoid parametric assumptions (most recent development)

Response 1: Non-parametric Tests of Other Characteristics of Distribution

- Rationale: Can analyze characteristics that are not as affected by nonnormality of distribution
 - Wilcoxon rank-sum test
 - Kolmogorov-Smirnov test

Potential Problem with Testing Other Characteristics of Distribution

- Tests indicate that some measure of cost distribution differs between treatment groups, such as its shape or location, but not necessarily that arithmetic means differ
- Resulting p-values not necessarily applicable to arithmetic mean

Response 2: Transform Data

- Transform costs so they approximate a normal distribution
 - Common transformations
 - Log (arbitrary additional transformations required if any observation equals 0)
 - Square root
 - Estimate and draw inferences about differences in transformed costs

Estimates and Inferences Not Necessarily Applicable to Sample (Arithmetic) Mean

- Goal is to use estimates and inferences of untransformed costs to estimate and draw inferences about differences in untransformed costs
 - Estimation: Simple exponentiation of mean of log costs results in geometric mean, a downwardly biased estimate of arithmetic mean
 - Need to apply smearing factor
 - Inference: On retransformed scale, inferences about log of costs translate into inferences about differences in geometric mean, not arithmetic mean

Primer On The Log Transformation Of Costs

Log Transformation of Cost

Raw Cost	Group 2	Group 3
Obs: 1	15	35
2	45	45
3	87	67
Arith mean	49	49
Log of arithmetic mean	3.8918203	3.8918203
Geometric mean ∜៉ុੰ⊓៉ុ	38.8694	47.2554
Log Cost		
Obs: 1	2.708050	3.555348
2	3.806663	3.806663
3	4.465908	4.204696
Arithmetic mean of logs	3.660207	3.855568
Exp ^(mean In)	38.8694	47.2554

Downward Bias of Geometric Mean

- Exponentiation of mean of logs yields geometric mean
- In presence of variability in costs, geometric mean downwardly biased estimate of arithmetic mean
 - All else equal, greater variance, skewness, or kurtosis, greater downward bias

- e.g.,
$$(25 * 30 * 35)^{0.333} = 29.7196$$

 $(10 * 30 * 50)^{0.333} = 24.6621$
 $(5 * 30 * 55)^{0.333} = 20.2062$
 $(1 * 30 * 59)^{0.333} = 12.0664$

• "Smearing" factor attempts to eliminate bias from exponentiation of mean of logs

Retransformation Of Log Of Cost (I)

• Duan's common smearing factor:

$$\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(Z_i - \hat{Z}_i)}$$

where in univariate analysis, \hat{Z}_{i} = group mean

Most appropriate when treatment group variances are equivalent

Retransformation Of Log Of Cost (II) Observ Group 2 2.708050 -.9521568 0.385908 2 3.806663 .1464555 1.157723 2 .805701 2.238265 2 3 4.465908 Mean, 2 3.660207 3 -.3002198 0.740655 3.555348 3.806663 -.0489054 0.952271 3 2 3 3 4.204693 .3491249 1.417826 Mean, 2 3.855568 Smear 1.148775

Common Smearing Retransformation (I)

· Retransformation formulas

$$E(\overline{Y}_{2}) = \Phi e^{(\overline{Z}_{2})}$$
$$E(\overline{Y}_{3}) = \Phi e^{(\overline{Z}_{3})}$$

Retransformation

Group	Ф		e ^{ln}	Predicted Cost
2	1.148775	х	38.8694	44.7
3	1.148775	х	47.2554	54.3

Common Smearing Retransformation (II)

- Why are retransformed subgroup-specific means -- 44.7 and 54.3 -- so different from untransformed subgroup means of 49?
- Because standard deviations of subgroups' logs are substantially different

$$SD_2 = 0.8880$$
; $SD_3 = 0.3274$

- Larger standard deviation for group 2 implies that compared with arithmetic mean, its geometric mean has greater downward bias than does geometric mean for group 3
- Thus, multiplication of 2 groups' geometric means by a common smearing factor cannot give accurate estimates for both groups' arithmetic means

Subgroup-specific Smearing Factors (I)

- Manning has shown that in face of heteroscedasticity -i.e., differences in variance -- use of a common smearing
 factor in retransformation of predicted log of costs yields
 biased estimates of predicted costs
- Obtain unbiased estimates by use of subgroup-specific smearing factors
- Manning's subgroup-specific smearing factor:

$$\Phi_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} e^{(Z_{ij} - \hat{Z}_{j})}$$

Group	Observ	ln		$e^{(z_i - \hat{z}_i)}$
2	1	2.708050	9521568	0.385908
2	2	3.806663	.1464555	1.157723
2	3	4.465908	.805701	2.238265
Mean, 2		3.660207	(1.260632
3	1	3.555348	3002198	0.740655
3	2	3.806663	0489054	0.952271
3	3	4.204693	.3491249	1.417826
Mean, 2		3.855568		
Smear			ζ.	1.0369173

Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

$$\begin{aligned} &\mathsf{E}(\overline{\mathsf{Y}}_{2}) = \Phi_{2} \; \mathsf{e}^{(\overline{\mathsf{Z}}_{2})} \\ &\mathsf{E}(\overline{\mathsf{Y}}_{3}) = \Phi_{3} \; \mathsf{e}^{(\overline{\mathsf{Z}}_{3})} \end{aligned}$$

Retransformation

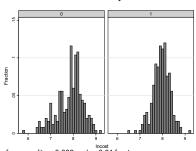
Group	Фі		e ^{ln}	Predicted Cost
2	1.260632	х	38.8694	49.00
3	1.0369173	х	47.2554	49.00

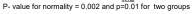
Subgroup-specific Smearing Retransformation (II)

- All else equal, in face of differences in variance (or skewness or kurtosis), use of subgroup-specific smearing factors yields unbiased estimates of subgroup means
- Use of separate smearing factors eliminates efficiency gains from log transformation, because cannot assume p-value derived for log of cost applies to arithmetic mean of cost

Potential Problems with Substituting Transformed Data for Raw Data (I)

· Log transformation doesn't always result in normality





Potential Problems with Substituting Transformed Data for Raw Data (II)

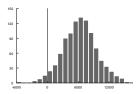
- P-value from t-test of log cost directly applies to difference in log of cost
- Generally also applies to difference in geometric mean of cost
 - Observe similar p-values for difference in log and difference in geometric mean
- P-value for log may or may not be directly applicable to difference in arithmetic mean of untransformed cost

Potential Problems with Substituting Transformed Data for Raw Data (III)

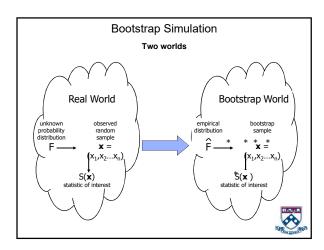
- Applicability of p-value for log to difference in arithmetic mean of untransformed cost depends on both distributions of log being normal and having equal variance and thus standard deviation
 - If log normally distributed and variances equal, inferences about difference in log generally applicable to difference in arithmetic mean
 - If log either not normally distributed or variances unequal, inferences about difference in log generally not applicable to difference in arithmetic mean

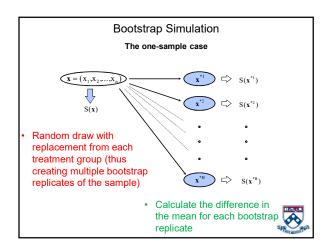
Response 3: Tests of Means that Avoid Parametric Assumptions

Bootstrap estimates distribution of observed difference in arithmetic mean costs



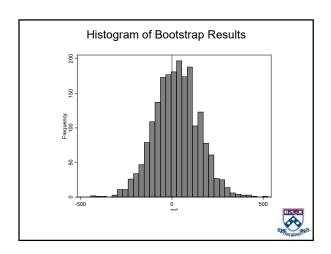
 Yields a test of how likely it is that 0 is included in this distribution (by evaluating probability that observed difference in means is significantly different from 0)





Bootstrap: Non-parametric and Parametric Tests

- · Nonparametric tests
 - P-value: count the number of replicates for which the difference is above and below 0 (yielding a 1-tailed test of the hypothesis of a cost difference)
 - CI: Order the differences from highest to lowest; identify the difference for the replicates that represent the 2.5th and 97.5th percentiles
- · Parametric tests:
 - Because each bootstrap replicate represents a mean difference, when we sum the replicates, the reported "standard deviation" is the standard error
 - Difference in means / SE = t statistic
 - Difference in means <u>+</u> 1.96 SE = 95% CI



Nonparametric Bootstrap and Normality

- Nonparametric bootstrap does not depend on normality, so there is no violation of assumptions, but...
- If sample median has smaller relative bias than sample mean, may be better to use median whether sample mean is analyzed parametrically or nonparametrically

Example: Distribution of Costs, Chapter 5

	Group 0	Group 1
Arith Mean	3015	3040
Std. Dev.	1582.802	1168.737
Quantiles		
5%	899	1426
25%	1819	2226
50%	2825.5	2900.5
75%	3752	3604
95%	6103	5085
Skewness	1.03501	1.525386
Kurtosis	4.910192	9.234913
Geom Mean	2600.571	2835.971
Mean In	7.8634864	7.9501397
SD In	.57602998	.37871479
Obs	250	250

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Example: P Values from 6 Univariate Tests of Difference in Cost

SUMMARY TABLE	P-value 95% CI
DIFFERENCE IN ARITHMETIC MEAN COST:	25.00 SE: 124.44
t-test, difference in means:	0.8409 -220 to 270
nonparametric BS, diff in means:	0.8600 -218 to 275
Wilcoxan rank-sum:	0.3722
Kolmogorov-Smirnov:	0.0017
t-test, difference in logs:	0.05
transformation to normal:	Sqrt
t-test, transformed variable:	0.2907
test for heteroscedasticity:	0.0000

Why Do Different Statistical Tests Lead To Different Inferences?

- Tests are evaluating differences in different statistics
 - T-test of untransformed costs: Cannot infer that arithmetic means differ
 - Bootstrap: Same (lack of) inference without normality assumption
 - Wilcoxon rank-sum test: Same inference, but had medians differed, p-value would have been significant
 - T-test of log costs: Can infer means of logs and thus geometric means – differ
 - Kolmogorov-Smirnov test: Can infer distributions differ (but not necessarily means or medians)

Summary, Univariate Analysis

- Want statistic that provides best estimate of population mean
 - Because mean * N is best estimate of what gainers gain and losers lose
- Best refers to a measure of error that incorporates both bias and variability
- · In face of skewness:
 - Sample means less biased
 - Sample median often less variable
- Transformation/retransformation of limited value in presence of heteroscedasticity

Outline (2)

- Part 1. Univariate analysis
- Part 2. Multivariable analysis
 - Ordinary least squares
 - Untransformed cost
 - Log of cost
 - General linear models (GLM)
 - Diagnostic tests
- Summary

Multivariable Analysis Of Economic Outcomes (I)

- Even if treatment is assigned in a randomized setting use of multivariable analysis may have added benefits:
 - Improves power for tests of differences between groups (by explaining variation due to other causes)
 - Facilitates subgroup analyses for cost-effectiveness (e.g., more/less severe; different countries/centers)
 - Variations in economic conditions and practice pattern differences by provider, center, or country may have a large influence on costs and randomization may not account for all differences
 - Added advantage: Helps explain what is observed (e.g., coefficients for other variables should make sense economically)

Nonrandom Assignment

 If treatment not randomly assigned, multivariable analysis necessary to adjust for observable imbalances between treatment groups, but may NOT be sufficient

Multivariable Techniques Used for Analysis of Cost

- · Common techniques
 - Ordinary least squares regression predicting costs after randomization (OLS)
- Ordinary least squares regression predicting log transformation of costs after randomization (log OLS)
- · Generalized Linear Models)GLM)
- · Other techniques:
 - Generalized Gamma regression (Manning et al., Journal of Health Economics, 2005)
 - Extended estimating equations (Basu and Rathouz, Biostatistics 2005)

Ordinary Least Squares (OLS)

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

- Advantages
 - Easy
 - No retransformation problem (faced with log OLS)
 - Marginal/Incremental effects easy to calculate
- Disadvantages
 - Not robust:
 - In small to medium sized data set
 - In large datasets with extreme observations
 - Can produce predictions with negative costs

Log Of Costs Ordinary Least Squares (log OLS)

$$InY = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_k X_k + \varepsilon$$

- Advantages
 - Widely known transformation for costs
 - Common in the literature
 - Reduces robustness problem
 - Improves efficiency
- Disadvantages
 - Retransformation problem can lead to bias
 - Coefficients not directly interpretable
 - Not easy to implement
 - Residual may not be normally distributed even after log transformation

LOG OLS Percentage Interpretation

 In same way that heteroscedasticity affects log OLS estimates of cost differences, it also undermines percentage interpretation of coefficients from log OLS

[See appendix slides for examples]

Problems with 'Typical" Methods

- · Problems with OLS
 - Not robust
 - Can produce predictions with negative cost
- · Problems with log OLS
 - Retransformation problem can lead to bias
 - Coefficients not directly interpretable
 - Residual may not be normally distributed even after log transformation
- · More generally:
 - Assume constant variance
 - Assume $E(ln(y)/x)=\Sigma \beta_i X_i$

Generalized Linear Models (GLM)

- · GLM models:
 - Don't require normality or homoscedasticity,
 - Evaluate log of mean, not mean of logs, and thus
 - Don't have problems related to retransformation from scale of estimation to raw scale
- To build them, must identify "link function" and "family" (based on data)

GLM Relaxes OLS Assumptions

- Ability to choose among different links relaxes assumption that $E(y/x) = \Sigma \beta_i X_i$ (OLS) or $E(ln(y)/x) = \Sigma \beta_i X_i$ (Log OLS)
- Ability to choose among different families relaxes assumption of constant variance
 - Gauss: constant variance
 - Poisson: variance proportional to mean
 - Gamma: variance proportional to square of mean
 - Inverse gauss: variance proportional to cube of mean

The Link Function

- Link function directly characterizes how the linear combination of the predictors is related to the prediction on the original scale
- Examples of links include:
 - Identity Link: $\hat{Y}_i = \beta_i X_i$ (used in OLS)
 - log link: $\hat{Y}_i = exp^{(\beta_i | X_i)}$ (NOT used in log OLS)

The Link Function

- Stata's power link provides a flexible link function
- It allows generation of a wide variety of named and unnamed links, e.g.,
 - power 2: $\hat{u}_i = (B_i X_i)^{0.5}$
 - power 1 = Identity link; $\hat{\mathbf{u}}_i = \mathbf{B}_i \mathbf{X}_i$
 - power .5 = Square root link; $\hat{\mathbf{u}}_i = (\mathbf{B}_i \mathbf{X}_i)^2$
 - power .25: $\hat{\mathbf{u}}_{i} = (\mathbf{B}_{i} \mathbf{X}_{i})^{4}$
 - power 0 = log link; $\hat{\mathbf{U}}_{i}$ = exp(BiXi)
 - power -1 = reciprocal link; $\hat{\mathbf{U}}_i = (\mathbf{B}_i \mathbf{X}_i)^{-1}$
 - power -2 = inverse quadratic; $\hat{\mathbf{u}}_i = (\mathbf{B}_i \mathbf{X}_i)^{-0.5}$

The Log Link

- · Log link most commonly used in literature
- · When log link is adopted, we are assuming:

 $In(E(y/x))=X\beta$

• GLM with a log link differs from log OLS in part because in log OLS, we are assuming:

 $E(ln(y)/x)=X\beta$

• $In(E(y/x) \neq E(In(y)/x)$

i.e. log of the mean cost ≠ mean of the log cost

Variable	Group 1	Group 2
Observations		
1	15	35
2	45	45
3	87	67
Arithmetic mean	49	49
Log, arith mean cost	3.8918203	3.8918203 *
Natural log		
1	2.708050	3.555348
2	3.806663	3.806662
3	4.465908	4.007333
Arith mean, log cost	3.660207	3.855568 †

Variable	Coefficient	SE	z/T	p value
GLM, gamn	na family, log lir	nk		
Group 2 🕻	0.000000	0.467766	0.00	1.000
Constant	3.8918203	0.330762	11.77	0.000
Log OLS				
Group 2 🕻	0.195361	0.546446	0.36	0.74
Constant	3.660207	0.386395	9.47	0.001

LOG OLS Percentage Interpretation

In same way that heteroscedasticity affects log OLS estimates of cost differences, it also undermines percentage interpretation of coefficients from log OLS

[See appendix slides for examples]

Selecting a Link Function

- While log link is most commonly used in literature, need not be the best fitting link
- · There is no single test that identifies the appropriate link
- · Instead can employ multiple tests of fit
 - Pregibon link test evaluates linearity of response on scale of estimation
 - Modified Hosmer and Lemeshow test evaluates systematic bias in fit on raw scale
 - Pearson's correlation test evaluates systematic bias in fit on raw scale
 - Ideally, all 3 tests will yield nonsignificant p-values

Family

- Specifies distribution that reflects mean-variance relationship
- Currently, families for continuous data available in Stata include:
 - Gaussian (constant variance)
 - Poisson (variance is proportional to mean)
 - Gamma (variance is proportional to square of mean)
 - Inverse gaussian (variance is proportional to cube of mean)
- Use of poisson, gamma, and inverse Gausian families relaxes assumption of homoscedasticity

Selecting a Family

- Modified Parks test is a "constructive" test that recommends a family given a particular link function
- Implemented after GLM regression that uses the particular link
- The test predicts the square of the residuals (res²) as a function of the log of the predictions (lnyhat) by use of a GLM with a log link and gamma family to
 - Stata code
 - glm res² lnyhat,link(log) family(gamma), robust
- If weights or clustering are used in the original GLM, same weights and clustering should be used for modified Park test

Recommended Family, Modified Park Test

- Recommended family derived from the coefficient for Inyhat:
 - If coefficient ~=0, Gaussian
 - If coefficient ~=1, Poisson
 - If coefficient ~=2, Gamma
 - If coefficient ~=3, Inverse Gaussian or Wald
- Given the absence of families for negative coefficients:
 - If coefficient ≤ -0.5, consider subtracting all observations from maximum-valued observation and rerunning analysis

Stata and SAS Code

· Stata Code

glm y x, link(linkname) family (familyname)

 General SAS code (not appropriate for gamma family / log link):

> proc genmod; model y=x/ link=linkname dist=familyname; run;

SAS Code for a Gamma Family / Log Link

- When running gamma/log models, the general SAS code drops observations with an outcome of 0
- If you want to maintain these observations and are predicting y as a function of x (M Buntin):

proc genmod;
 a = _mean_;
 b = _resp_;
 d = b/a + log(a)
 variance var = a²
 deviance dev =d;
 model y = x / link = log;
 run;

Stata Commands: Modified Park Test . gen res2 = ((cost-yhat)^2) . gen lnyhat = ln(yhat) . glm res2 lnyhat , link(log) family(gamma) robust nolog No. of obs = 200 Residual df = 198 Scale parameter = 5.37055 (1/df) Deviance = 2.808569 (1/df) Pearson = 5.37055 Generalized linear models Optimization : ML: Newton-Raphson = 556.0966603 = 1063.368955 Pearson Variance function: $V(u) = u^2$ Link function : $g(u) = \ln(u)$ Standard errors : Sandwich [Log] Log pseudo-likelihood = -3667.729811 BIC =-492.9701783 AIC = 36.6973 Robust z P>|z| [95% Conf. Interval] -.3815133 1.993416 -.5702812 20.66463

GLM Comments (I)

- Advantages
 - Relaxes normality and homoscedasticity assumptions
 - Consistent even if not correct family distribution
 - Choice of family only affects efficiency if link function and covariates are specified correctly
 - Gains in precision from estimator that matches data generating mechanism
 - Avoids retransformation problems of log OLS models

GLM Comments (II)

- Disadvantages
 - Can suffer substantial precision losses
 - If heavy-tailed (log) error term, i.e., log-scale residuals have high kurtosis (>3)
 - If family is misspecified

Retransformation

- GLM avoids problem that simple exponentiation of results of log OLS yields biased estimates of predicted costs
- GLM does not avoid other complexity of nonlinear retransformations (also seen in log OLS models):
 - On transformed scale, effect of treatment group is estimated holding all else equal; however, retransformation (to estimate costs) reintroduces covariate imbalances

Recycled Predictions

- For multiplicative models (e.g., log or logit), shouldn't use means of covariates when making predictions
 - Mean of retransformations does not equal retransformation of mean
- Instead use method of recycled predictions to create an identical covariate structure for two groups by:
 - $-\,$ Coding everyone as if they were in treatment group 0 and predicting $\hat{Z}_{_0}$
 - Coding everyone as if they were in treatment group 1 and predicting \hat{Z}_{i_1}
- Since Stata 11, can be implemented in Stata with "margins" command

GLM Model Output *****glm model (poisson/log) . glm cost treat \$ivar, family (poisson) link(log) Generalized linear models Optimization: ML: Newton-Raphson Beviance = 700567.946 Pearson = 791555.8081 Link function: V(u) = u Link function: y(u) = ln(u) Link function: g(u) = ln(u) Log likelihood = -351346.9719 Bot = 699545.3708 Cost | Coef. Std. Err. z P>|z| [95% Conf. Interval] treat | .4629637 .0015546 297.81 0.000 .4599168 .4660106 age | .0082989 .0000756 70.972 0.000 .0084072 ejfract | -.0081781 .0001135 -72.07 0.000 .0084076 -.0079557 sex | -.0721448 .001617 159.99 0.000 .244919 .2829137 race | .0462949 .0023699 19.53 0.000 .4164499 .259137 race | .0462949 .0023699 19.53 0.000 .434939 .859399 cons | 8.359824 .005554 1505.18 0.000 8.388399 8.37071

Recycled Predictions (II)

replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmptreat

. tabstat pois_1 pois_0 pois_dif

stats | pois_1 pois_0 pois_dif mean | 10843.55 6825.096 4018.451

What is "margins" Command Doing?

- Margins command equivalent to
 - Generating a temporary 0/1 variable that equals the treatment status variable
 - Assigning 0s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₀, the predicted cost had everyone been in treatment group 0
 - Assigning 1s to temporary variable for all observations independent of actual treatment status
 - Predicting pcost₁, the predicted cost had everyone been in treatment group 1

Margins

3099.56 - 2963.18 = 136.38 difference

Special Cases (I)

- · A substantial proportion of observations have 0 costs
 - May pose problems to regression models
 - Commonly addressed by developing a "two-part" model in which the first part predicts the probability that the costs are zero or nonzero and the second part predicts the level of costs conditional on there being some costs
 - 1st part : Logit or probit model
 - 2nd part : GLM model

Special Cases (II)

- · Censored costs
 - Results derived from analyzing only the completed cases or observed costs are often biased
 - Need to evaluate the "mechanism" that led to the missing data and adopt a method that gives unbiased results in the face of missingness

For details see Chapter 6 in Glick HA, Doshi JA, Sonnad SS, Polsky D. Economic Evaluation in Clinical Trials, 2007 (Oxford University Press).

Multivariate Analysis: Summary/Conclusion

- Use mean difference in costs between treatment groups estimated from a multivariable model as the numerator for a cost-effectiveness ratio
- Establish criteria for adopting a particular multivariable model for analyzing the data prior to unblinding the data (i.e., the fact that one model gives a more favorable result should not be a reason for its adoption)
- Given that no method will be without problems, it may be helpful to report the sensitivity of results to different specifications of the multivariable model

APPENDIX: Percentage Interpretation of Log OLS Coefficients

Failure of % Interpretation of	Log OLS?
--------------------------------	----------

Variable	Group 1	Group 2	Group 3
Raw cost / Log cost			
Obs: 1	12.975 / 2.563	19.4625 / 2.968	38 / 3.638
2	25 / 3.219	37.5 / 3.624	40.547 / 3.702
3	52.025 / 3.952	78.0375 / 4.357	56.453 / 4.033
Mean / Log mean	30 / 3.2445	45 / 3.6500	45 / 3.7912
SD / SD Log	20 / 0.6947	30 / 0.6947	10 / 0.2123

- Groups 1 and 2 differ in SD of cost (20 vs 30) (heteroscedasticity on cost scale) but share same SD of logs (0.6947) (homoscedasticity on log scale)
- Groups 2 and 3 and 1 and 3 differ in both SD of cost (30 vs 10 and 20 vs 10) and SD of log cost (0.6947 vs 0.2123) (heteroscedasticity on cost scale and log scale)

Failure of % Interpretation of Log OLS

Variable	G2 vs G1	G3 vs G1	G3 vs G2
Group means	45 vs 30	45 vs 30	45 vs 45
Obs % Mean Diff, Cost	50%	50%	0%
Log OLS Coef	0.405	0.547	0.141
exp ^(coef) - 1	0.50	0.727	0.152

- For difference between G2 vs G1, 0.405 coefficient from log OLS predicting log cost ≠ observed 50% difference
 But exp^(0.405) - 1 does (0.5 vs 50%)
- For differences between G3 vs G1 and G3 vs G2, neither coefficients from log OLS (0.547 and 0.141) nor exp^(coef)-1 (0.727 and 0.152) equal observed % differences (50% and 0%)

% Interpretation of GLM With Log Link/Gamma Family

Variable	G2 vs G1	G3 vs G1	G3 vs G2
Group means	45 vs 30	45 vs 30	45 vs 45
Obs % Mean Diff, Cost	50%	50%	0%
GLM Coef, Cost (log/gam)	0.405	0.405	0.0
exp ^(coef) - 1	0.50	0.50	0.0

- For differences between G2 vs G1 and G3 vs G1, 0.405 coefficient from GLM predicting cost ≠ observed 50% difference
 - But exp(0.405) 1 does (0.5 vs 50%)
- For difference between groups G3 vs G2, both coefficient and exp⁽⁰⁾ - 1 equal observed difference (0.0 vs 0%)

Summary, Percentage Interpretation

- · For log OLS:
 - Percentage interpretation of coefficient generally unreasonable
 - Percentage interpretation of exp^(coef)-1 reasonable when strict homoscedasticity on log scale
 - Percentage interpretation of exp^(coef)-1 less/un reasonable when log SDs differ
- · For GLM with log link and gamma family:
 - Percentage interpretation of coefficient generally unreasonable
 - Percentage interpretation of exp^(coef)-1 reasonable whether or not SDs on log scale are identical

