

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

Outline

- -
	-
	-
	-
	-
- Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

Parameter for CEA

Parameter for CEA
 Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

The Cost data 101

Outline

Part 1. Un Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

The Statistical Methods in the Statist Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

The violation of normality

Part 1. Un Evaluating Patient Level Costs

Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

The Markov Conference

Cost diant 1. U Statistical Methods in Health Economic Evaluations

ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

The Chick Chee-Jen Chang, and Henry Glick

The Chick Chee-Jen Chang, a inferences? • ISPOR 8th Asia-Pacific Conference

September 9, 2018

Jalpa Doshi, Chee-Jen Chang, and Henry Glick

Fract 1. Univariate analysis

• Part 1. Univariate prameter for CEA

– Cost data 101

– Finer on log cost

– Primer on l
-

Policy Relevant Parameter for CEA (I)

- Part 1. Univariate analysis

 Policy relevant parameter for CEA

 Cost data 101

 Response to the violation of normality

 Primer on log cost

 When different statistical tests lead to different

 Internet economi from any policy gain enough to be able to compensate losers and still be better off themselves • Part 1. Universide analysis

– Policy relevant parameter for CEA

– Cest dat 101

– T-tests

– Response to the violation of normality

– Why do different statistical tests lead to different

inferences?

• Part 2. Multi – Policy relevant parameter for CEA

– T-tests

– T-tests

– Response to the violation of normality

– Primer on log cost

– Why do different statistical tests lead to different

• Part 2. Multivariable analysis

• Part
- (N * arithmetic/sample mean)
- lose, or cost, and how much winners win, or benefit

Policy Relevant Parameter for CEA (II)

- Policy Relevant Parameter for CEA (II)
• Other summary statistics such as median cost may be
useful in describing the data, but do not provide
information about the difference in cost that will be
incurred or the cost useful in describing the data, but do not provide information about the difference in cost that will be incurred or the cost saved by treating patients with one therapy versus another Policy Relevant Parameter for CEA (II)

Other summary statistics such as median cost may be

seful in describing the data, but do not provide

mortured or the cost saved by treating patients with one

herapy versus another Policy Relevant Parameter for CEA (II)

• Other summary statistics such as median cost may be

useful in describing the data, but do not provide

incornation about the difference in cost that will be

incurred or the cost Policy Relevant Parameter for CEA (II)

• Other summary statistics such as median cost may be

useful in describing the data, but do not provide

incornation about the difference in cost that will be

incurred or the cost Folicy Relevant Parameter for CEA (II)

• Other summary statistics such as median cost may be

unformation about the difference in cost that will be

information about the difference in cost at that will be

therapy versus • Policy Relevant Parameter for CEA (II)
• Other summary statistics such as median cost may be
useful in describing the data, but do not provide
the short the difference in cost tast will be
thereup versus another ending Policy Relevant Parameter for CEA (II)

by the summary statistics such as median cost may be

indefination about the difference in cost that will be

incurred or the cost save of by treating patients with one

neutred or t The summary statistics such as median cost may be
internation about the difference in cost that will be
notination about the difference in cost that will be
normador of the cost saved by treating patients with one
nerapy v
-
- fact that we are interested in arithmetic mean
- geometric means, simply because cost distribution satisfies assumptions of test statistics, may be tempting, but does not answer question being asked esturing de data, but do not provide

and the difference in cost that will be

noting of the cost assued by treating patients with one

nerray versus another

— They thus are not associated with social efficiency

and that

Cost Data 101

-
- -
	- services than less severe cases
	- small number of patients
		- A minority of patients are responsible for a high proportion of health care costs

Typical Distribution Of Cost Data (II)

-
- Fypical Distribution Of Cost Data (II)
• Heavy tails vs. "outliers"
– Distributions with long, heavy, right tails will have
larger sample means than medians Typical Distribution Of Cost Data (II)
Heavy tails vs. "outliers"
— Distributions with long, heavy, right tails will have
larger sample means than medians - Distributions with long, heavy, right tails will have
larger sample means than medians

* p = 0.003 and 0.000 for nonnormality of groups 0 and 1, respectively

Univariate And Multivariable Analyses Of Economic Outcomes

- Univariate And Multivariable Analyses Of

Economic Outcomes

 Analysis plans for economic assessments should

routlinely include univariate and multivariable methods for

analyzing the trial data

 Univariate analyses ar routinely include univariate and multivariable methods for analyzing the trial data
- economic outcomes
- Univariate And Multivariable Analyses Of

Economic Outcomes

 Analysis plans for economic assessments should

routinely include univariate and multivariable methods for

 Univariate analyses are used for the predictors o Univariate And Multivariable Analyses Of

Economic Outcomes

Economic Outcomes

Malysis plans for economic assessments should

poutriely include univariate and multivariable methods for

malyzing the trial data

Divisitate stay, and other resource use before entry of study • Univariate And Multivariable Analyses Of

Economic Outcomes

• Analysis plans for economic assessments should

routinely include univariate and multivariable methods for

• Univariate analyses are used for the predicto Univariate And Multivariable Analyses Of

Economic Outcomes

Islamispi plans for economic assessments should

Doutinely include univariate and multivariable methods for

Individualize the adia

Doutine and the state and th
- participants into the trial
• Univariate and multivariable analyses should be used for the economic outcome data
	- y ears y

Univariate Analysis Of Costs

- -
- Univariate And Multivariable Analyses Of

Economic Outcomes

 Analysis plans for economic assessments should

routinely include univariate and multivariable methods for

analyzing the trial data

 Univariate analyses are Univariate And Multivariable Analyses Of

Economic Outcomes

Inanysis plans for economic ansessments should

outlinely include univariate and multivariable methods for

Invivariate analyses are used for the predictors of
 arithmetic mean costs (because n x mean = total), not median costs; thus means are the statistic of interest violitics analyses are used for the predictors of

invivariate and manufors of variable conditions of conditions of standard and deter resume use before entry of study

participants in the trial

participants in the trial
 – Demographic characteristics, clinical history, length of
stay, and other resource use before entry of study
invariate and multivariate analyses should be used for
the economic outcome data
— Total costs, hospital days, q • Univariate Analysis Of Costs
• Report
• Conomic analysis is based on differences in
• Economic analysis is based on differences in
• Interests and the differences and a starting point
• Interests and division of the st Univariate Analysis Of Costs

Aport.

— Arithmetic means and their differences in

strong can differences in

arithmetic mean costs (because on out mean = total),

not median costs; thus means are the statistic of

— Measu Univariate Analysis Of Costs

Report

Arithmetic means and their difference

• Economic mankins is based on differences in

arithmetic mean costs (because n x mean = total),

not median costs; thus means are the statistic Report:

A Economic analysis is based on differences in

anthredic mean costs (because n x mean = total),

not median costs (because n x mean = total),

interest

interest

- Measures of variability and precision, such as:
	- -
	-
	- arithmetic means
		- Occurred by chance and is economically meaningful

Univariate Analysis: Parametric Tests Of Raw Means

- - total costs, QALYS, etc.
	-
- preference score) data, but t-tests have been shown to be robust to violations of this assumption when: - Measures of variability and precision, such as:

Standard deviation

Cuantiles such as 5%, 10%, 50%,...

Cuantiles such as 5%, 10%, 50%,...

arithmetic means

- Cuanted by chance and is economically

meaningful

- meanin
	- **Samples moderately large**
	- Samples are of similar size and skewness
	- Skewness is not too extreme
	- skewness," and "not too extreme"?

Responses To Violation Of Normality Assumption

- distribution that are not as affected by nonnormality of distribution ("biostatistical" approach)
- France To Violation Of Normality Assumption
• Adopt nonparametric tests of other characteristics of
distribution that are not as affected by nonnormality of
• distribution ("biostatistical" approach)
• Transform data to ap Fransform data to approach of Normality Assumption

• Adopt nonparametric tests of other characteristics of

distribution ("biostatistical" approach)

• Transform data to approximate normal distribution (e.g.,

Stata "lade Stata "ladder" command) ("classic econometric" approach) **Responses To Violation Of Normality Assumption**

• Adopt nonparametric tests of other characteristics of

distribution that are not as affected by nonnormality of

distribution ("biostatstical" approach)

• Transform data **Responses To Violation Of Normality Assumption**

• Adopt nonparametric tests of other characteristics of

distribution that are not as affected by nonnomially of

distribution (to astalar deprocant)

• Transform data to a Month that are not as affected by nonnormality of

sistribution (this date of the characteristics of

Sistribution (this date approximate normal distribution (e.g.,

Transform data to approximate normal distribution (e.g., Mopharametric tests of other characteristics of

Mistribution (Thistatistical approach)

Institution (Tansform data to approximate normal distribution (e.g.,

Transform data to approximate normal distribution (e.g.,

Inspe
- assumptions (most recent development)

Response 1: Non-parametric Tests of Other Characteristics of Distribution

- affected by nonnormality of distribution
	-
	-

Potential Problem with Testing Other Characteristics of Distribution

- Fraction analyze characteristics of Distribution

 Rationale: Can analyze characteristics that are not as

affected by nonormality of distribution

 Wilcoxon rank-sum test

 Kolmogorov-Smirnov test

 Kolmogorov-Smirn differs between treatment groups, such as its shape or location, but not necessarily that arithmetic means differ • Rationale: Can analyze characteristics that are not as
affected by monomality of distribution
– Wilcoxon rank-sum test
– Kolmogorov-Smirnov test

– Rolmogorov-Smirnov test

Potential Problem with Testing Other
Potenti
- arithmetic mean

Response 2: Transform Data

- distribution
	-
- Response 2: Transform Data
• Transform costs so they approximate a normal
«distribution
– Common transformations
• Log (arbitrary additional transformations required
if any observation equals 0)
• Square root
• Estimate an Response 2: Transform Data

Transform costs so they approximate a normal

listribution

- Common transformations

• Log (arbitrary additional transformations required

if any observation equals 0)

• Square root

— Estimat Log (arbitrary additional transformations required if any observation equals 0) Response 2: Transform Data

Transform costs so they approximate a normal

listribution

- Common transformations

- Log (arbitrary additional transformations required

if any observation equals 0)

- Estimate and draw infe
	- Square root
	- transformed costs

Estimates and Inferences Not Necessarily Applicable to Sample (Arithmetic) Mean

- untransformed costs to estimate and draw inferences about differences in untransformed costs
- Fransform costs so they approximate a normal

distribution

 Common transformations

 Log (arbitrary additional transformations required

if any observation equals 0)

 Square root

 Square root

 Square root

 Squar costs results in geometric mean, a downwardly biased estimate of arithmetic mean
	- Need to apply smearing factor
	- Transform costs so they approximate a normal

	istribution

	 Common transformations

	famy observation equals 0)

	Square root

	Sequare root

	Function: Simple exponentiation of the mean of differences in

	transformed costs
 Figure root and the memories about differences in

	Estimate and of a winderences about differences in

	transformed costs

	transformed costs

	Transformed costs

	Costale, inferences: Only (Arithmetic)

	Applicable to Sample (log of costs translate into inferences about differences in geometric mean, not arithmetic mean

Primer On The Log Transformation Of Costs

Downward Bias of Geometric Mean

-
- downwardly biased estimate of arithmetic mean **•** Exponentiation of mean of logs yields geometric mean
• Exponentiation of mean of logs yields geometric mean
• In presence of variability in costs, geometric mean
• All telse cual, graeter variance, skewness, or
• Kurt
	- kurtosis, greater downward bias
- e.g., $(25 * 30 * 35)^{0.333} = 29.7196$
		- $(10 * 30 * 50)^{0.333} = 24.6621$ $(5 * 30 * 55)^{0.333} = 20.2062$

 $(1 * 30 * 59)^{0.333} = 12.0664$
• "Smearing" factor attempts to eliminate bias from exponentiation of mean of logs • In presence of variationity in costs, geometric means $-$ All else equal, grader definitied c are thrones, skeweess, or knotss, greater downward biss
 $-$ e.g., $(25 \cdot 30 \cdot 35)^{0.333} = 29.7196$

(10 * 30 * 55)^{0.333} =

Retransformation Of Log Of Cost (I)

$$
\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(Z_i - \hat{Z}_i)}
$$

where in univariate analysis, \hat{Z} = group mean \hat{Z} = \hat{Z} =

equivalent

Common Smearing Retransformation (I)

 2^{j} $3/$ (Z_2) \mathbf{Q}_2) = $\Phi e^{(2i)}$ (Z_{α}) $E(Y_2) = \Phi e^{i2\phi}$
 $E(\overline{Y_3}) = \Phi e^{i\overline{Z_3}b}$ $\Phi \, \mathbf{e}^{(2s)}$

Common Smearing Retransformation (II)

- means of 49?
- substantially different

- $SD_2 = 0.8880$; $SD_3 = 0.3274$

 Larger standard deviation for group 2 implies that compared with arithmetic mean, its geometric mean has greater downward bias than does geometric mean for group 3
- common smearing factor cannot give accurate estimates for both groups' arithmetic means

Subgroup-specific Smearing Factors (I)

- Subgroup-specific Smearing Factors (I)
• Manning has shown that in face of heteroscedasticity --
i.e., differences in variance -- use of a common smearing
factor in retransformation of predicted log of costs yields
biased Subgroup-specific Smearing Factors (I)
Manning has shown that in face of heteroscedasticity --
i.e., differences in variance -- use of a common smearing
factor in retransformation of predicted log of costs yields
Dibiani u • Manning has shown that in face of heteroscedasticity --
i.e., differences in variance -- use of a common smearing
factor in retransformation of predicted log of costs yields biased estimates of predicted costs **Subgroup-specific Smearing Factors (I)**
 • Manning has shown that in face of heteroscedisticity --

i.e., differences in variance -- use of a common smearing

factor in retransformation of predicted log of costs yields **Subgroup-specific Smearing Factors (I)**
 • Manning has shown that in face of heteroscedasticity \cdot
 i.e., differences in variance -- use of a common smearing

take is measurement of predicted log of costs yields

s
- smearing factors
-

$$
\Phi_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} e^{(Z_{ij} - \hat{Z}_{j})}
$$

Subgroup-specific Smearing Factors (II) Subgroup-specific Smearing Factors (I)

• Manning has shown that in face of heterococalistics u_n

i.e., differences in variance – use of a common smearing

blased estimation of policitar collistics logi of casts yields
 Subgroup-specific Smearing Factors (I)

Manning has shown that in fixed of helerococeasticity

Lead cellimates of predicated costs of a common smearing

biased estimates of predicate costs of a cellimate by use of subgrou Subgroup-specific Smearing Factors (I)

Manning has shown that in fire of heliencoscalistics

Let, differential in which are discussed to a control are a common smaling

Unique the model of the control of the control of t 2 3 4.4656 . Alternation and the main of the content of a common smearing

Let, different the main of a common smearing

Except in terms through content of a common smearing

Content unbiased content of subgroup-specific Manning has bown that in fore of heliocococalistic view

Let, differences in variations of predicted log of costs yields

Solution terms and predicted log of costs yields

Constant in the strategy use of subgroup-specific i.e., differences in variable co-use of a common smearing

taken in etransitor of products visites

Chain invariance of products visites

Chain invariance by use of subgroup-specific

Chain invariance by use of subgroup-s Subgroup-specific Smearing Foctors (ii)

Shared estimates of produced costs

The continues of the strategies are distinguished to the strategies and strategies are distinguished to the strategies of the strategies and the Subgroup-specific Symbol of the Condition of Symbol of the Condition Symbol o Chian insulance estimates by use of subgroup-specific

annealing subgroup-specific smearing factor:
 $\Phi_1 = \frac{1}{N_1} \sum_{i=1}^{N_2} e^{i2_i - 2_i}$
 $\Phi_2 = \frac{1}{N_1} \sum_{i=1}^{N_2} e^{i2_i - 2_i}$

Subgroup-specific Smearing Factors (II)
 s Manning's subgroup-specific smearing factor:
 $\Phi_1 = \frac{1}{N_1} \sum_{i=1}^{N_2} e^{i\theta_i \cdot z_i}$
 $\Phi_2 = \frac{1}{N_1} \sum_{i=1}^{N_2} e^{i\theta_i \cdot z_i}$

Subgroup-specific Smearing Factors (II)
 $\frac{1}{N_1} \sum_{i=1}^{N_2} e^{i\theta_i \cdot z_i}$
 $\frac{1}{N_1} \sum_{$ $\overline{z_i - \hat{z}_i}$ $\overline{e^{(z_i - \hat{z}_i)}}$ Subgroup-specific Smearing Factors (II)
 $\frac{3}{2}$ and $\frac{1}{2}$ an = $\frac{2}{2}$ = $\frac{1}{2}$ 200806 - 5621566 0.385906

2 = 3 4.465908 - 5621566 0.385906

46an, 2 = 3.660207 - (- 1.200622 - Σ239265

46an, 2 = 3.662627

3 4.204693 - 0.469054 0.462571

3 4.204693 - 0.489054 0.462571

46an,

Subgroup-specific Smearing Retransformation (II)

- Subgroup-specific Smearing Retransformation (II)
• All else equal, in face of differences in variance (or
skewness or kurtosis), use of subgroup-specific
smearing factors yields unbiased estimates of subgroup
means
gains f skewness or kurtosis), use of subgroup-specific smearing factors yields unbiased estimates of subgroup means
- Subgroup-specific Smearing Retransformation (II)
• All else equal, in face of differences in variance (or
sheeves or kurtosis), use of subgroup-specific
smearing factors yields unbiased estimates of subgroup
• Use of separ gains from log transformation, because cannot assume p-value derived for log of cost applies to arithmetic mean of cost

Potential Problems with Substituting Transformed Data for Raw Data (II)

- difference in log of cost
- cost
	- difference in geometric mean
- difference in arithmetic mean of untransformed cost

Potential Problems with Substituting Transformed Data for Raw Data (III)

- Potential Problems with Substituting Transformed

Data for Raw Data (III)

 Applicability of p-value for log to difference in arithmetic

mean of untransformed cost depends on both

distributions of log being normal and h mean of untransformed cost depends on both distributions of log being normal and having equal variance and thus standard deviation otential Problems with Substituting Transformed
Data for Raw Data (III)
Applicability of p-value for log to difference in arithmetic
nean of untransformed cost depends on both
distributions of log being normal and having e bential Problems with Substituting Transformed

Data for Raw Data (III)

Applicability of p-value for log to difference in arithmetic

mena of untansformed cost depends on both

Institutions of log being normal and having
	- inferences about difference in log generally applicable to difference in arithmetic mean
	- unequal, inferences about difference in log generally not applicable to difference in arithmetic mean

Bootstrap: Non-parametric and Parametric Tests

- - difference is above and below 0 (yielding a 1-tailed test of the hypothesis of a cost difference)
	- identify the difference for the replicates that represent the $2.5th$ and $97.5th$ percentiles
- - difference, when we sum the replicates, the reported "standard deviation" is the standard error
	- Difference in means / SE = t statistic
	-

Nonparametric Bootstrap and Normality

- Nonparametric bootstrap does not depend on normality, so there is no violation of assumptions, but...
- Nonparametric Bootstrap and Normality
• Nonparametric bootstrap does not depend on normality,
• So there is no violation of assumptions, but...
• If sample median has smaller relative bias than sample
mean, may be better **CONTRON CONTROVER INTER**
• Interaction bootstrap does not depend on normality,
• So there is no violation of assumptions, but...
• If sample median has smaller relative bias than sample
mean, may be better to use median w mean, may be better to use median whether sample mean is analyzed parametrically or nonparametrically

Why Do Different Statistical Tests Lead To Different Inferences? Why Do Different Statistical Tests Lead To

Different Inferences?

Its are evaluating differences in different statistics

T-est of untransformed costs: Cannot infer that

arithmetic means differ

Bootstrap: Same (lack of)

- - arithmetic means differ
- Why Do Different Statistical Tests Lead To

Different Inferences?

 Tests are evaluating differences in different statistics

 T-test of untransformed costs: Cannot infer that

 arithmetic means differ

 Bootstrap: Sam Why Do Different Statistical Tests Lead To

Different Inferences?

Tests are evaluating differences in different statistics

— T-test of untransformed costs: Cannot infer that

arithmetic means differ

— Bootstrap: Same (l Why Do Different Statistical Tests Lead To

Different Inferences?

Tests are evaluating differences in different statistics

arithmetic means differ

arithmetic means differ

— Bootstrap: Same (lack of) inference without n assumption Why Do Different Statistical Tests Lead To

Different Inferences?

Tests are evaluating differences in different statistics

Thest of untansformed costs: Cannot infer that

a sumption

Boostrap: Same (lack of) inference wi Vihy Do Different Statistical Tests Lead To

Different Inferences?

rests are evaluating differences in different statistics

T-test of unitarsformed costs: Cannot infer that

anotheric means of logical costs: Can infer me Vhy Do Different Statistical Tests Lead To

Different Inferences?

T-test of untransformed costs: Cannot infer that

T-test of untransformed costs: Cannot infer that

a stamplion

— Boostarp: Same (lack of) inference witho Why Do Different Statistical Tests Lead To

Littlerent Inferences?

Thest are evaluating differences in different statistics

- Thest of untransformed costs: Cannot infer that

arithmetic means differ

- Bootstarp: Same (Why Do Different Statistical Tests Lead To

Different Inferences?

T-test of untransformed costs: Cannot inferent statistics

T-test of untransformed costs: Cannot inferent that

a stumption

A boostname. Sum (lack of) inf • Tests are evaluating differences in different statistics

– T-test of untransformed costs: Cannot infer that

arthrentic means difference, both premiere without normality

assumption

– Bootstrap: Same (lack of) inferenc – T-lest of untransformed costs: Cannot infer that

a childrene inears differ

a Coolistap: Same (lack of) inference without normality

assumption

– Wilcoxon rank-sum test: Same inference, but had

medians differed, parithmetic means differ

abotstrp: Same (lack of) inference without normality

assumption

assumption

assumption

medians differed, p-value would have been significant

medians differed, p-value would have been significan
	- medians differed, p-value would have been significant
	- Bootster: Same (leck of) inference without normality

	assumption

	 Wilcoxon rank-sum test: Same inference, but had

	median sufflered, p-value would have been significant

	 T-test of log costs: Can infer means of logs –
	- differ (but not necessarily means or medians)

Summary, Univariate Analysis

- - gain and losers lose
- bias and variability assumption

• Wilcoxon rank-sum test: Same inference, but had

— medians differed, p-value would have been significant

— T-test of log costs: Can infer means of logs – and thus

differ (but not necessarily means or media • Want statistic that provides best estimate of population

mean

• Beasue mean * Ni s best estimate of youtal gainers

• again and losers lose

gain and losers lose

best refers to a measure of error that incorporates bo • Want statistic that provides best estimate of population

— Because mean 'N is best estimate of what gainers

— Because mean 'N is best estimate of what gainers

— Bact refers to a measure of error that incorporates bo Sulfilinary, Universite Priaclysis

Want statistic that provides best estimate of population

mean

mean

gain and losers lose

distant of the stress connection of the distance of the stress single

means less taised

— Sa – Because mean * N is best estimate of what gainers

gain and losers lose

dest refers to a measure of error that incorporates both

In face of skewnses:

Searl destrussions are subseted

- Sample median of and in sis vari gian and losers lose

est refers to a measure of error that incorporates both

bias and variability

— Sample means less biased

— Transfo
- -
	-
- presence of heteroscedasticity Pest refers to a measure of error that incorporates both

bias and variability

- Sample means less blased

- Sample meal and of hele sexuals be

Transformation/ferfance/mathematical presence of heleroscedasticity

presenc

Outline (2)

-
- - - Untransformed cost
		- Log of cost
		-
-
-

Multivariable Analysis Of Economic Outcomes (I)

- Multivariable Analysis Of Economic Outcomes (I)
• Even if treatment is assigned in a randomized setting
use of multivariable analysis may have added benefits:
– Improves power for tests of differences between
groups (by ex use of multivariable analysis may have added benefits:
	- groups (by explaining variation due to other causes)
	- (e.g., more/less severe; different countries/centers)
- Ultivariable Analysis Of Economic Outcomes (I)

Even if treatment is assigned in a randomized setting

se of multivariable analysis may have added benefits:

 Improves power for tests of differences between

groups (by ex ultivariable Analysis Of Economic Outcomes (I)

Even if treatment is assigned in a randomized setting

tises of multivariable analysis may have added benefits:

— Improves power for tests of differences between

— Facilita Univariable Analysis Of Economic Outcomes (I)
Ven if treatment is assigned in a randomized setting
less of multivariable analysis may have added benefits:
 $\frac{1}{2}$ mproves power for tests of differences between
 $\frac{1}{2}$ pattern differences by provider, center, or country may have a large influence on costs and randomization may not account for all differences ditivariable Analysis Of Economic Outcomes (I)
view if treatment is assigned in a randomized setting
these of multivariable analysis may have added benefits:
— Improves power for tests of differences between
 $-$ Eq., morel Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting

– mproves power for tests of differences between

groups (by explaining variation due to the reatesses

– Facilitate
	- (e.g., coefficients for other variables should make sense economically)

Nonrandom Assignment

analysis necessary to adjust for observable imbalances between treatment groups, but may NOT be sufficient • If treatment not randomly assigned, multivariable

analysis necessary to adjust for observable implances

between treatment groups, but may NOT be sufficient

• Common techniques Used for Analysis of Cost

• Common techn Monrandom Assignment

If treatment not randomly assigned, multivariable

mahysis necessary to adjust for observable imbalances

retheren treatment groups, but may NOT be sufficient

 Example 1998

 Example 1999

 • If treatment not randomly assigned, multivariable

analysis necessary to adjust for observable imbalances

between treatment groups, but may NOT be sufficient

between treatment groups, but may NOT be sufficient

• Cornt

Multivariable Techniques Used for Analysis of Cost

- - after randomization (OLS)
- transformation of costs after randomization (log OLS) analysis necessary to adjust for observable imbalances

between treatment groups, but may NOT be sufficient

• Gromman techniques

• Gromman techniques

• Gromman techniques

– Gromman techniques

after randomization (OL **Example 19 For the Control of the Control** France Commission (Manning et al., The Commission (Manning et al., Commission (Manning et al., France Controllers (Basic School Controllers (Basic School Controllers)

and France Controllers (School Controllers)

and France Controllers (School Controllers)

and France Controllers (School Controllers)

Controllers (B
-
- - Journal of Health Economics, 2005)
	- Biostatistics 2005)

Ordinary Least Squares (OLS)

- -
- Ordinary Least Squares (OLS)
 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + + \beta_k X_k + \epsilon$

Advantages

 Easy

 No retransformation problem (faced with log OLS)

 Marginal/Incremental effects easy to calculate

 Disadvantages

 No trobust:

 Ordinary Least Squares (OLS)
 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \mathcal{E}$

Advantages

- Easy

- No retransformation problem (faced with log OLS)

- Marginal/Intermental effects easy to calculate

- Siliadvantages

- Not robus – Ordinary Least Squares (OLS)

γ = α + β₁X₁ + β₂X₂ + ... + β₂X_k + €

Advantages

– Easy

– No retransformation problem (faced with log OLS)

– Marginal/Incremental effects easy to calculate

– Not robust:
 Ordinary Least Squares (OLS)

Y = $\alpha + \beta_1 X_1 + \beta_2 X_2 + + \beta_k X_k + C$

Advantages

- Easy

- No retransformation problem (faced with log OLS)

- Marginal/Incremental effects easy to calculate

Disadvantages

- Not robust:

In Ordinary Least Squares (OLS)

Y = α + $\beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \epsilon$

• Advantages

– No retransformation problem (faced with log OLS)

– Marginal/Incremental effects easy to calculate

Disadvantages

– No robust:

• In Ordinary Least Squares (OLS)

Y = α + β , X_1 + $\beta_2 X_2$ + ... + $\beta_6 X_4$ + ϵ

devantages

- No retransformation problem (faced with log OLS)

- Marginal/Incremental effects easy to calculate

- No trobust:

-Ordinary Least Squares (OLS)

Y = α + β , X₁ + β ₂ X₂ + ... + β , X₄ + ϵ

Advantages

= Easy
 α Nordransformation problem (faced with log OLS)
 α - Marginal/Incremental effects easy to calculate
 Ordinary Least Squares (OLS)

Y = $\alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$

tages

sy

retransformation problem (faced with log OLS)

vantages

vantages

vantages
	-
- - -
		-
	-

Log Of Costs Ordinary Least Squares (log OLS) Ordinary Least Squares (OLS)

Y = α + β , X₁ + β , X₂ + ... + β , X₄ + C

Advantages

- Easy

- Marginal/Incremental effects easy to calculate

- Disadvantages

- Marginal/Incremental effects easy to calcul V = a + β, X_1 + β, X_2 + + β, X_4 + E

Whandages

- Easy

- No retransformation problem (faced with log OLS)

blackdvantages

- Not robust:

- In $Y = a + \beta_1 X_1 + \beta_2 X_2 + + \beta_N X_k + C$

dvantages
 $- Easy$
 $- Nor retransformation problem (faced with log OLS)$
 $- Marginal/incremental effects easy to calculate\n- Not robust:\n
$$
- hot robust
$$
\n
$$
- hot robust
$$
\n$ Hore transformation problem (faced with log OLS)

— Marginal/Incernental effects easy to calculate

Shistowahadges

— Hot robust:

— In small to medium sized data set

— In large datasets with extreme observations

— Can divintages
 $E = \text{Baying}\xspace$
 $\text{A loginal/Incremental effects easy to calculate}\n\text{Madinal/incremental effects easy to calculate}\n\text{Sisadvantage} = \text{Not robust:}\n\text{In large datasets with extreme observations\n\text{Can produce predictions with negative costs}\n\text{Can produce predictions with negative costs}\n\text{Sasymmetry} = \text{Can product of the square roots}\n\text{Sasymmetry} = \text{Can product of the square roots}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.}\n\text{Canim.$ – Easy

– Narginal/incremental effects easy to calculate

– Disadvantages

– Disadvantages

– Distributed the medium sized data set

– In inalige datases with externe observations

– Can produce predictions with negativ – No retransformation problem (faced with log OLS)

blackdvantages

– Not robust:

– The mail to medium sized data set

– The mail to medium sized data set

– Can produce predictions with negative costs

– Can produce pre – Marginal/Incremental effects easy to calculate

The Microbust:

The mail to medium sized data set

In large datasets with extreme observations

– Can produce predictions with negative costs

(Coefficients interpretable) – Not easy to implement – Not robust:

In large datasets with extreme observations

– Can produce predictions with negative costs

– Can produce predictions with negative costs

(a)

MY = $\alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$

(dvantages

– Widely kn Ordinary Least Squares (OLS)

Y = α + β₁X₁ + β₂X₂ + + β₁X_k + €

Instagram/Incremental effects easy to calculate

or retransformation problem (faced with log OLS)

Avantages

In small to medium sized data

$$
lnY = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + C
$$

- -
	-
	-
	-
- -
	-
	-
	-

LOG OLS Percentage Interpretation

Log Of Costs Ordinary Least Squares (log OLS)
 $lnY = a + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \mathcal{E}$

Advantages

– Widely known transformation for costs

– Common in the literature

– Reduces robustness problem

– Disadvantages

– Retr estimates of cost differences, it also undermines percentage interpretation of coefficients from log OLS

[See appendix slides for examples]

Problems with 'Typical" Methods

- -
- Problems with 'Typical" Methods

 Problems with OLS

 Not robust

 Can produce predictions with negative cost

 Problems with log OLS

 Retransformation problem can lead to bias

 Ceofficients not directly interpreta
- -
	-
- Problems with 'Typical" Methods

Problems with OLS

 Not robust

 Can produce predictions with negative cost

 Can produce predictions with negative cost

 Restansformation problem can lead to bias

 Coefficients not Problems with 'Typical" Methods

Problems with OLS

- Not robust

- Can produce predictions with negative cost

- Centransformation problem can lead to bias

- Ceefficients not directly interpretable

- Residual may not be Problems with 'Typical" Methods

• Problems with OLS

– Not robust

– Can produce predictions with negative cost

• Problems with log OLS

– Retransformation problem can lead to bias

– Coefficients not directly interpreta Problems with 'Typical" Methods

Problems with OLS

— Not robust

— Can produce predictions with negative cost

— Can produce production with negative cost

Problems with log OLS

— Restransformation problem can lead to bi Problems with 'Typical" Methods

Problems with OLS

— Not robust

— Can produce predictions with negative cost

Troblems with log OLS

— Retransformation problem can lead to bias

— Coefficients not directly interpretable
 Problems with "Typical" Methods

Problems with OLS

— Not robust

— Can produce predictions with negative cost

— Coefficients not directly interpretable

— Ceofficients of directly interpretable

— Residual may not be no after log transformation Problems with 'Typical" Methods

• Problems with OLS

– Not robust

– Can produce predictions with negative cost

• Problems with log OLS

– Retransformation problem can lead to bias

– Coefficients not directly interpret Problems with 'Typical" Methods

Problems with OLS

— Not robust

— Can produce predictions with negative cost

The constant variance problem can lead to bias

— Residual may not be normally distributed even

— Residual m Problems with 'Typical" Methods

Problems with OLS

— Not robust

— Can produce predictions with negative cost

— Cam produce predictions with negative cost

— Coefficients not directly interpretable

— Censicual may not
- -
	-

Generalized Linear Models (GLM)

- -
	- **Don't have problems related to retransformation**
- Problems with 'Typical" Methods

 Problems with OLS

 Not robust

 Can produce predictions with negative cost

 Can produce predictions with negative cost

 Problems with log OLS

 Cerficients not directly interpreta Problems with 'Typical" Methods

"Croblems with O.S

— Not robust

— Con produce predictions with negative cost

— Coefficients not directly interpretable

— Coefficients in directly interpretable

— Ensidual may not be no Problems with 'Typical" Methods

- Not robust

- Can produce predictions with negative cost

conclens with og O.5.

- Cent moduce predictions with negative cost

- Residuate may not be normally distributed even

after log from scale of estimation to raw scale - Not robust

• To can produce predictions with negative cost

• Problems with log OLS

- Retatium may not be normally distributed even

after log transformation

after log transformation

• More generally:

- Assume E((based on data)

GLM Relaxes OLS Assumptions

- Generalized Linear Models (GLM)

 GLM models:

 Don't require normality or homosoedasticity,

 Evaluate log of mean, not mean of logs, and thus

 Don't have problems related to retransformation

 To build them, must assumption that $E(y/x) = \Sigma \beta_i X_i$ (OLS) or $E(ln(y)/x) = \Sigma \beta_i X_i$ (Log OLS) • Clumodels:

• Clumodels:

• Don't require normality or homoscedasticity,

• Found the of of men, not mean of logs, and thus

• To build them, must identify "link function" and "family"

(based on data)

• To build them, – Evaluate log of mean, not mean of logs, and thus

and the Constant of Constant varian of logs, and thus

to Don't have problems related to retransformation

or build them, must electrication to raw scale

constant vari – Evaluate log of mean, not mean of logs, and thus

• Dori have problems related to retansformation

from scale of estimation to raw scale

for build them, must identify "link function" and "family"

based on data)

• GLM From thave problems related to redrandsomation

from scale of estimation to raw scale

for build them, must identify "link function" and "family"

Dased on data)

GLM Relaxes OLS Assumptions

Subject to choose among d From scale of estimation to raw scale

To build them, must identify "link function" and "family"

based on data)

CLM Relaxes OLS Assumptions

Substitution to choose among different links relaxes

Substitution that E
- assumption of constant variance
	-
	-
	-
	-

The Link Function

- **•** Link function directly characterizes how the linear

 Link function directly characterizes how the linear

 Examples of links include:

 Examples of links include:

 Identity Link: $\hat{Y}_i = \beta_i X_i$ (used in OLS)

 combination of the predictors is related to the prediction on the original scale The Link Function

• Link function directly characterizes how the linear

combination of the predictors is related to the prediction

• Examples of links include:

• Lentity Link: $\hat{Y}_1 = P_X \hat{Y}_1$ (used in OLS)

– log li The Link Function

in the function directly characterizes how the linear

incombination of the predictions is related to the prediction

by the original scale
 $\frac{1}{2}$ = Mentity Link: $\hat{Y}_1 = \exp^{(i\pi X)}$ (used in OLS)
 The Link Function

ink function directly characterizes how the linear

combination of the predictors is related to the prediction

in the original scale

Examples of links: $\hat{Y}_i = B_i X_i$ (used in OLS)
 $-\text{leaf link: \hat{Y}_i = \exp^{(i$ • Ink function directly characterizes how the linear

• combination of the predictions is related to the prediction

on the original scale

• Exchiples of hinks include:

• learnly Link: $\hat{Y}_i = B_i X_j$ (used in OLS)

– leg • Ink function directly characterizes how the linear

combination of the predictors is related to the prediction

• Examples of links include:

– Identify Link: $\hat{Y}_i = \exp^{(i\chi x_i)}$ (NoT used in log OLS)

– log link: $\hat{Y$ Link function directly characterizes how the linear

ombination of the predictors is related to the prediction
 $\frac{1}{2}$ – lendity Link: $\hat{Y}_1 = \hat{\theta}$, X (used in OLS)
 $\frac{1}{2}$ – lendity Link: $\hat{Y}_1 = \exp^{i(X_1)}$ (NOT ink function directly characterizes how the linear

combination of the prediction

the original scale

Examples of links: $\hat{Y}_i = \beta_i X_i$ (wed in OLS)

— Identity Link; $\hat{Y}_i = \exp^{(i_1 x_i)}$ (NOT used in log OLS)

The Link
- Identity Link: $\hat{Y}_i = \beta_i X_i$ (used in OLS)
- $\hat{Y}_i = \exp^{(\beta_i X_i)}$

The Link Function

- in the original scale

Examples of links include:
 $-$ loentity Link: $\hat{Y}_1 = \beta$, X_2 (used in OLS)
 $-$ log link: $\hat{Y}_1 = \exp^{(A \times 1)}$ (NOT used in log OLS)
 The Link Function
 Stata
 Stata
 Stata
 Stata
 St Examples of links include:
 $-$ log link; $\hat{Y}_1 = \hat{P}_1 \hat{X} \hat{X}$ (used in OLS)
 $-\log \text{link:} \hat{Y}_1 = \exp^{(2/\lambda)}$ (NOT used in log OLS)

Stata's power link provides a flexible link function

stata's power links constrained wit – log link; $\hat{Y}_1 = \beta, X$ (used in OLS)

– log link; $\hat{Y}_1 = \exp^{0.0 \times X}$ (NOT used in log OLS)

The Link Function

Stata's power link provides a flexible link function

stata's power links, e.g.,

– power -1 = (entity lin – log link: $\hat{Y}_i = \exp^{(i \times i)}$ (NOT used in log OLS)

The Link Function

Stata's power link provides a flexible link function

and allows generation of a wide variety of named and

— power -2 = (\hat{B} , \hat{Q} , \hat{B} ,
	- unnamed links, e.g.,
	- power 1 = Identity link; $\hat{u}_i = B_i X_i$ - power 2: $\hat{u}_i = (B_i X_i)^{0.5}$
	- power .5 = Square root link; $\hat{u}_i = (B_i X_i)^2$
	- power .25: $\hat{u}_i = (B_i X_i)^4$
	- power 0 = log link; $\hat{u}_i = \exp(BiXi)$
	- -1 and the contract of the con - power -1 = reciprocal link; $\hat{U}_i = (B_i X_i)^{-1}$
	- -0.5 - power -2 = inverse quadratic; $\hat{u}_i = (B_i X_i)^{-0.5}$

The Log Link

-
- - ln(E(y/x))=Xβ
- Stata's power link provides a flexible link function

 It allows generation of a wide variety of named and

 power 2 Link (EX)⁵⁶

 power 1 = Identity link; U_n = BX

 power 1 = Identity link; U_n = BX

 power • The Link Function
• Stata's power link provides a flexible link function

• It allows generation of a wide variety of named and

– power 1 = ldentily link; $\dot{u}_1 = B\dot{x}_1$

– power 5 = Square root link; $\dot{u}_1 = (B\dot{x}_1)^$ • Stata's power link provides a flexible link function

• thallows generation of a wide variety of named and

• power 2 - L_J = (B_AV₃

• power 5 = Square root link; $U_i = RX_i$

• power JS = Glorific, $U_i = (BX_i)^2$

• pow in log OLS, we are assuming: • ln(E(y/x) ≠ E(ln(y)/x)

• lextrement and the light in the cost in the cost of the cos i.e. $\mu = \text{length}(p_1, p_2)$

over $\pi = \text{length}(p_1, p_2)$

over $\pi = \text{length}(p_1, p_2)$

over $\pi = 25$ come received link; $Q_1 = (B_1X)^n$

over $\pi = 2$ inverse quadratic; $Q_1 = (B_1X)^n$

over $\pi = 2$ inverse quadratic; $Q_1 = (B_1X)^{n/2}$

 $E(ln(y)/x)=X\beta$

LOG OLS Percentage Interpretation

estimates of cost differences, it also undermines percentage interpretation of coefficients from log OLS

[See appendix slides for examples]

Selecting a Link Function

- Selecting a Link Function
• While log link is most commonly used in literature, need
not be the best fitting link
• There is no single test that identifies the appropriate link
• Instead can employ multiple tests of fit
– not be the best fitting link • While log link is most commonly used in literature, need
• There is no single test that identifies the appropriate link
• There is no single test that identifies the appropriate link
• Instead can employ multiple tests o Selecting a Link Function
• While log link is most commonly used in literature, need
• There is no single test fitting link
• There is no single test hat identifies the appropriate link
• Instead can employ multiple tests
-
- - scale of estimation
	- systematic bias in fit on raw scale
- Selecting a Link Function

While log link is most commonly used in literature, need

oto be the best fitting link

There is no single test hat identifies the appropriate link

Instead can employ multiple tests of fit

 Pr Selecting a Link Function

While log link is most commonly used in literature, need

oto be the best fitting link

There is no single test that identifies the appropriate link

Instead can employ multiple tests of fit

— P Selecting a Link Function

While log link is most commonly used in literature, need

oto be the best fitting link

there is no single test that identifies the appropriate link

Instead can employ multiple tests of fit

— P in fit on raw scale Selecting a Link Function

While log link is most commonly used in literature, need

othe these is fitting link

There is no single lest that identifies the appropriate link

stead can employ multiple tests of fit

scene o
	-

Family

- relationship
- Selecting a Link Function
• While log link is most commonly used in literature, need
• There is no single test flat identifies the appropriate link
• There is no single test that identifies the appropriate link
• Instead • Selecting a Link Function

• While log link is most commonly used in literature, need

• There is no single test ltat lidentifies the appropriate link

• There is no single test ltat letnities the appropriate link

• Ins include: While log link is most commonly used in literature, need

There is no single test that identifies the appropriate link

There is no single test that identifies the appropriate link

— Pregibon link test evaluates linearity othe the best fitting link
thate is no single test that identifies the appropriate link
that can cannot by multiple tests of fit
somehold in fit is the valuates linearity of response on
somehold Hosmer and Lemeshow test ev There is no single test that identifies the appropriate link

metaded can employ multiple tests of fit

a c-regibon link test evaluates linearity of response on

scale of estimation last in fit on raw scale
 \rightarrow Meaning i misted can employ multiple tests of fit

Fregilon link test svaluates linearity of response on

Scale of estimation

Systematic bias in fit on raw scale

Systematic bias in fit on raw scale

Systematic bias in fit on raw s • Scale of estimation

• Modified Hosner and Lemeshow test evaluates

• systematic bias in fit on raw scale

– Pearson's correlation test evaluates systematic bias

– Ideally, all 3 tests will yield nonsignificant p-values
	-
	-
	-
	- mean)
- relaxes assumption of homoscedasticity

Selecting a Family

- recommends a family given a particular link function
- particular link
- Specifies distribution that reflects mean-variance
• Currently, families for continuous data available in Stata
• Currently, families for continuous data available in Stata
• Gamma (variance is proportional to squee of • Specifies distribution that reflects mean-variance

• clurtently, families for continuous data available in Stata

include:

— Gaussian (constant variance)

— Poisson (variance is proportional to mean)

— inverse gaussi • Specifies distribution that reflects mean-variance

• Catternity, families for continuous data available in Stata

include:

– Gaussian (constant variance)

– Samon Variance is proportional to sugare of mean)

– Camma (v • The test predicts the square of the residuals (res²) as a function of the log of the predictions (lnyhat) by use of a GLM with a log link and gamma family to nclue:

- Gaussian (constant variance)

- Gaussian (constant variance)

- Examme (variance is proportional to exame of mean)

- Inverse gaussian (variance is proportional to clube of

mean)

- States constant and inverse G – Poisson (wainnes is proportional to mean)

– Gamma (variance is proportional to sugare of mean)

– Inverse gaussian (variance is proportional to cube of

• Use of poisson, gamma, and inverse Gausian families

relaxes

- glm res2 lnyhat,link(log) family(gamma), robust
- same weights and clustering should be used for modified Park test

Recommended Family, Modified Park Test

- Recommended Family, Modified Park Test
• Recommended family derived from the coefficient for

Inyhat:

 If coefficient ~=0, Gaussian

 If coefficient ~=3, Theres Gaussian or Wald

 If coefficient ~=3, Therese Gaussia lnyhat: Recommended Family, Modified Park Test

Recommended family derived from the coefficient for

myhat:

— If coefficient ~=1, Poisson

— If coefficient ~=1, Poisson

— If coefficient ~=3, Inverse Gaussian or Wald

Siven the a
	-
	-
	-
	-
	-
- Recommended Family, Modified Park Test
Recommended family derived from the coefficient for
— If coefficient ~=0, Gaussian
— If coefficient ~=1, Poisson
— If coefficient ~=2, Gamma
— If coefficient ~=3, Inverse Gaussian or Recommended Family, Modified Park Test
Recommended family derived from the coefficient for

If coefficient ~=0, Gaussian

— If coefficient ~=1, Poisson

— If coefficient ~=2, Gamma

— If coefficient ~=3, Inverse Gaussian o Recommended Family, Modified Park Test

Recommended family derived from the coefficient for

myhat:

— If coefficient ~=1, Poisson

— If coefficient ~=1, Poisson

— If coefficient ~=2, Gamma

— If coefficient ~=3, Inverse • Recommended Family, Modified Park Test
• Recommended family derived from the coefficient for

lnyhat:

– If coefficient -=1, Gaussian

– If coefficient -=1, Poisson

– If coefficient -=2, Camma

– Coefficient -=3, Inver Fracemended Family, Modified Park Test
Recommended family derived from the coefficient for
 -1 fooefficient -=0, Gaussian
 -1 fooefficient -=1, Poisson
 -1 fooefficient -=2, Gama
 -1 fooefficient -=2, Inverse Gauss observations from maximum-valued observation and rerunning analysis • Recommended Family, Modified Park Test

• Recommended family derived from the coefficient for

– If coefficient -=1, Poisson

– If coefficient -=2, Gamma

– If coefficient -=2, Gamma

– If coefficient -=2, Imverse Gauss • Recommended family derived from the coefficient for
 $-$ If coefficient -=1, Poisson

– If coefficient -=2, Gamma

– If coefficient -=2, Gamma

– If coefficient -=2, Gamma

– Given the absence of families for meating all

Stata and SAS Code

glm y x, link(linkname) family (familyname)

log link): • Stata code

• Stata Code

• glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family /

log link,

• proc gammod;

• model y=x/link=linkname dist=familyname;

• run;

• run;

• SA Stata and SAS Code

stata Code

glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family /

proc genmod;

model y=x/link=linkname dist=familyname;

run;

run;

SAS Code for a Gamma

proc genmod; model y=x/ link=linkname dist=familyname; run;

SAS Code for a Gamma Family / Log Link

- drops observations with an outcome of 0
- predicting y as a function of x (M Buntin):

proc genmod;

 $a = \text{mean}$; $b =$ resp ; $d = b/a + log(a)$ variance var = a^2 deviance dev =d; model $y = x /$ link = log; run;

$$
\bigotimes_{\mathcal{A}\in\mathcal{B}}
$$

GLM Comments (I)

- -
	- Choice of family only affects efficiency if link function and covariates are specified correctly
	- generating mechanism
	-

GLM Comments (II)

- -
- GLM Comments (II)

 Disadvantages

 Can suffer substantial precision losses

 If heavy-tailed (log) error term, i.e., log-scale

residuals have high kurtosis (>3)

 If family is misspecified GLM Comments (II)
Disadvantages
– Can suffer substantial precision losses
• If heavy-tailed (log) error term, i.e., log-scale
residuals have high kurtosis (>3)
• If family is misspecified If heavy-tailed (log) error term, i.e., log-scale residuals have high kurtosis (>3)
	- **If family is misspecified**

Retransformation

- GLM comments (II)

 Disadvantages

 Can suffer substantial precision losses

 If heavy-tailed (log) error term, i.e., log-scale

 residuals have high kurtosis (>3)

 If family is misspecified

 GLM avoids problem t results of log OLS yields biased estimates of predicted costs
- retransformations (also seen in log OLS models):
- Gladvantages

 Can suffer substantial precision losses

 If heavy-laided (og) error term, i.e., log-scale

 residuals have high kurtosis (>3)

 If family is misspecified

 If family is misspecified

 CLM avoids pro – Can suffer substantial precision losses

if theny-tailed (tog) encor term, i.e., log-scale

residuals have high kurtosis (>3)

• If family is misspecified

• If family is misspecified

• Comparison of the state of treatm estimated holding all else equal; however, retransformation (to estimate costs) reintroduces covariate imbalances • GLM avoids problem that simple exponentiation of

• GLM avoids of log OLS yields biased estimates of predictied

costs

• Colt does not avoid other complexity of nonlinear

• retransformations (also seen in log OLS model Refaransformation

SLM avoids problem that simple exponentiation of

results of log OLS yields biased estimates of predicted

costs not avoid other complexity of nonlinear

Estransformations diaso seen in log OLS models):
 • GLM avoids problem that simple exponentiation of

results of log OLS yields biased estimates of predicted

• CLM does not avoid other complexity of nonlinear

• Chransformations (also seen in log OLS models):

• On tran For the material condition (and the complexity of nonlinear techniscs (material coding all essee in in to 0.5 m conders):
 \overline{C} - On transformation (to estimate costs) reintroduces

retansformation (to estimate costs) ertransformations (also seen in log OLS models):
 \overline{C} – On transformation (a) else equal; however,

estimated holding all else equal; however,

retansformation (or estimate costs) reintroduces

covariate imbalances

F estimated holding all else equal; however,

retransformation (to estimate costs) reintroduces

covariate imbalances

Covariate imbalances

The multiplicative models (e.g., log or logit), shouldn't use

means of covariates

Recycled Predictions

- For multiplicative models (e.g., log or logit), shouldn't use means of covariates when making predictions
	- retransformation of mean
- identical covariate structure for two groups by:
	- and predicting $\hat{\mathsf{Z}}_{\text{0}}$
	- and predicting 2_{11}
- "margins" command

Recycled Predictions (II)

```
replace treat=0
 predict pois_0<br>replace treat=1<br>predict pois_1                      <del>  </del>
 gen pois_dif=pois_1-pois_0
replace treat=tmptreat
 . tabstat pois_1 pois_0 pois_dif
 stats | pois_1 pois_0 pois_dif
 ---------+------------------------------
 mean | 10843.55 6825.096 4018.451
----------------------------------------
 Freedischer Text = 0<br>
Freedischer Text = 0<br>
Freedischer Text = 0<br>
Freedischer Text = 1<br>
Freedischer Text = 1<br>
Freedischer Text = 1<br>
- States 1<br>
- States 1<br>
- States 1<br>
- States 1<br>
- Margins - Margins Command Doing?<br>
- Ma
      Recycled Predictions (II)<br>
Elace treat-1<br>
Elace treat-1<br>
and the transitions of the transitional property<br>
states the poist of the summer of the summer of the summer of the summer<br>
states (and the summer of the summer of t
      blace treat=0<br>
diace trast=1<br>
diace trast=1<br>
class diace trast=1<br>
pois_dif-pois_1-pois_0<br>
pois_dif-pois_1-pois_0<br>
abstar pois_1 pois_0<br>
abstar pois_1 pois_0<br>
sexterned absoluted for all pois_0<br>
mean in 10643.5825.096 4018.
      microposes<br>
and the posts of the posts of the prediction of the prediction of the prediction of the prediction of the posts of the state in mean (10643.55 6
      poisa_diff=poisa_1-poisa_0<br>
alabstat poisa_1-poisa_0<br>
alabstat poisa_1-poisa_0<br>
states | poisa_1 poisa_0<br>
mean | 10643.55 6825.096 4018.451<br>
mean | 10643.55 6825.096 4018.451<br>
mean | 10643.55 6825.096 4018.451<br>
<br>
Alargins
      – Predicting pcost1
```
What is "margins" Command Doing?

- - treatment status variable
	-
	- observations independent of actual treatment status $-$ Predicting pcost $_{0}$, the predicted cost had everyone
	- been in treatment group 0
	- observations independent of actual treatment status
	- $-$ Predicting pcost₁, the predicted cost had everyone been in treatment group 1

Special Cases (I)

- -
- that the costs are zero or nonzero and the second part predicts the level of costs conditional on there being some costs • A substantial proportion of observations have 0 costs

• A substantial proportions to regression models

– Commonly addressed by developing a "two-part"

model in which the first part predicts the probability

that the Special Cases (I)

Substantial proportion of observations have 0 costs

— May pose problems to regression models

that the costs are zero or nonzer and the second

model in which the first part redicts the norshalility

pa A substantial proportion of observations have 0 costs

— May pose problems to regression models

— Commonly addressed by developing a "mo-part"

model in which the first part predicts the probability

part predicts the lev
	- **1st part : Logit or probit model**
	- 2nd part : GLM model

Special Cases (II)

- cases or observed costs are often biased
- missing data and adopt a method that gives unbiased results in the face of missingness For details see Chapter of in Glick HA, Doshi JA, Sonnad SS,
Chapter 6 in Glick HA, Theodore Chapter of the state of the chapter of the control control cases of chapter for manalyzing only the completed
cases of chapter fo Policial Cases (II)

Special Cases (II)

Censored costs

- Results derived from analyzing only the completed

- Results derived from analyzing only the completed

- Need to evaluate the "mechanism" that led to the

- missi

University Press).

Multivariate Analysis: Summary/Conclusion

- estimated from a multivariable model as the numerator for a cost-effectiveness ratio
- Multivariate Analysis: Summary/Conclusion

Use mean difference in costs between treatment groups

setimated from a multivariable model as the numerator

for a cost-effectiveness ratio

 Establish criteria for adopting a p Multivariate Analysis: Summary/Conclusion

• Use mean difference in costs between treatment groups

estimated from a multivariable model as the numerator

for a cost-effectiveness ratio

• Establish criteria for adopting a model for analyzing the data prior to unblinding the data (i.e., the fact that one model gives a more favorable result should not be a reason for its adoption) Multivariate Analysis: Summary/Conclusion

• Use mean difference in costs between treatment groups

estimated from a multivariable model as the numerator

• Establish criteria for adopting a particular multivariable

model
- helpful to report the sensitivity of results to different specifications of the multivariable model

APPENDIX: Percentage Interpretation of Log OLS Coefficients

(heteroscedasticity on cost scale) but share same SD of logs (0.6947) (homoscedasticity on log scale)

vs 10 and 20 vs 10) and SD of log cost (0.6947 vs 0.2123) (heteroscedasticity on cost scale and log scale)

- log OLS predicting log cost ≠ observed 50% difference
- coefficients from log OLS (0.547 and 0.141) nor exp(coef)-1 (0.727 and 0.152) equal observed % differences (50% and 0%)

coefficient from GLM predicting cost ≠ observed 50% difference • For GLM with log link and gamma family: ^{et .-1}

of differences between G2 vs G1 and G3 vs G1, 0.405

Ferficient from GLM predicting cost \neq observed 50%

But expl^{3,435}) - 1 does (0.5 vs 50%)

or difference between groups G3 vs G2, both coefficient

dexp d'afferences between ISZ % 31 and G3 V8 G1, 0.400

Ferficient from GLM predicting cost \neq observed 50%

But exp(^{2,425)} - 1 does (0.5 % 50%)

But exp(^{2,455}) - 1 does (0.5 % 50%)

But exp(^{2,65}) - requal observed dif

Summary, Percentage Interpretation

- -
	- unreasonable
- Percentage interpretation of exp^(coef)-1 reasonable when strict homoscedasticity on log scale
	- reasonable when log SDs differ
-
- unreasonable
- whether or not SDs on log scale are identical

