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Outline

• Part 1.  Univariate analysis

– Policy relevant parameter for CEA

– Cost data 101

– T-tests

– Response to the violation of normality

– Primer on log cost

– Why do different statistical tests lead to different 
inferences?

• Part 2.  Multivariable analysis

Policy Relevant Parameter for CEA (I)

• In welfare economics, projects cost-beneficial if winners 
from any policy gain enough to be able to compensate 
losers and still be better off themselves

• Decision makers interested in total program cost/budget 
(N * arithmetic/sample mean )

• Policy relevant parameter quantifies how much losers 
lose, or cost, and how much winners win, or benefit
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• Other summary statistics such as median cost may be 
useful in describing the data, but do not provide 
information about the difference in cost that will be 
incurred or the cost saved by treating patients with one 
therapy versus another

– They thus are not associated with social efficiency

• Lack of symmetry of cost distribution does not change 
fact that we are interested in arithmetic mean

• Evaluating some other difference, be it in medians or 
geometric means, simply because cost distribution 
satisfies assumptions of test statistics, may be tempting, 
but does not answer question being asked

Policy Relevant Parameter for CEA (II)

Cost Data 101

• Commonly right-skewed (i.e., long, heavy, right tails)

• Data tend to be skewed because:

– Can have 0 costs, but not negative costs

– Most severe cases may require substantially more 
services than less severe cases

– Certain very expensive events occur in relatively 
small number of patients

 A minority of patients are responsible for a high 
proportion of health care costs

0
.0

5
.1

.1
5

0 5000 10000 0 5000 10000

0 1

F
ra

ct
io

n

cost
Graphs by treat

Typical Distribution Of Cost Data

Sk=1.04; Ku=4.9 Sk=1.52; Ku=9.2



3

Typical Distribution Of Cost Data (II)

• Heavy tails vs. "outliers“

– Distributions with long, heavy, right tails will have 
larger sample means than medians

Problem Not Related Solely to “Outliers”

• Distribution when 5 observations with cost > 7200 
(>3SD) are eliminated
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Full Sample Trimmed *

Group 0 Group 1 Group 0 Group 1

Mean 3015 3040 2927 3010

Median 2826 2901 2816 2885

* p = 0.003 and 0.000 for nonnormality of groups 0 and 
1, respectively

Means and Medians When 5 Observations with 
Cost > 7200 are Eliminated



4

Univariate And Multivariable Analyses Of 
Economic Outcomes

• Analysis plans for economic assessments should 
routinely include univariate and multivariable methods for 
analyzing the trial data

• Univariate analyses are used for the predictors of 
economic outcomes

– Demographic characteristics, clinical history, length of 
stay, and other resource use before entry of study 
participants into the trial

• Univariate and multivariable analyses should be used for 
the economic outcome data

– Total costs, hospital days, quality-adjusted life     
years

Univariate Analysis Of Costs

• Report:

– Arithmetic means and their difference

 Economic analysis is based on differences in 
arithmetic mean costs (because n x mean = total), 
not median costs; thus means are the statistic of 
interest

– Measures of variability and precision, such as:

 Standard deviation

 Quantiles such as 5%, 10%, 50%,... 

– An indication of whether or not the difference in 
arithmetic means 

 Occurred by chance and is economically 
meaningful

Univariate Analysis: Parametric Tests Of Raw Means

• Usual starting point: T-tests and one way ANOVA

– Used to test for differences in arithmetic means in 
total costs, QALYS, etc.

– Makes assumption that costs are normally distributed

– Normality assumption routinely violated for cost (and 
preference score) data, but t-tests have been shown 
to be robust to violations of this assumption when:

 Samples moderately large

 Samples are of similar size and skewness

 Skewness is not too extreme

– What is meant by “moderately large,” “similar size and 
skewness,” and “not too extreme”?
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Responses To Violation Of Normality Assumption

• Adopt nonparametric tests of other characteristics of 
distribution that are not as affected by nonnormality of 
distribution (“biostatistical” approach)

• Transform data to approximate normal distribution (e.g., 
Stata “ladder” command) (“classic econometric” 
approach)

• Adopt tests of arithmetic means that avoid parametric 
assumptions (most recent development)

Response 1: Non-parametric Tests of Other 
Characteristics of Distribution

• Rationale: Can analyze characteristics that are not as 
affected by nonnormality of distribution

– Wilcoxon rank-sum test

– Kolmogorov-Smirnov test

Potential Problem with Testing Other 
Characteristics of Distribution

• Tests indicate that some measure of cost distribution 
differs between treatment groups, such as its shape or 
location, but not necessarily that arithmetic means differ

• Resulting p-values not necessarily applicable to 
arithmetic mean
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Response 2: Transform Data

• Transform costs so they approximate a normal 
distribution

– Common transformations

 Log (arbitrary additional transformations required 
if any observation equals 0)

 Square root

– Estimate and draw inferences about differences in 
transformed costs

Estimates and Inferences Not Necessarily 
Applicable to Sample (Arithmetic) Mean

• Goal is to use estimates and inferences of 
untransformed costs to estimate and draw inferences 
about differences in untransformed costs

– Estimation: Simple exponentiation of mean of log 
costs results in geometric mean, a downwardly 
biased estimate of arithmetic mean

 Need to apply smearing factor 

– Inference: On retransformed scale, inferences about 
log of costs translate into inferences about differences 
in geometric mean, not arithmetic mean

Primer On The 
Log Transformation Of Costs
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Log Transformation of Cost

Raw Cost Group 2 Group 3

Obs:  1 15 35

2 45 45

3 87 67

Arith mean 49 49

Log of arithmetic mean 3.8918203 3.8918203

Geometric mean 38.8694 47.2554

Log Cost

Obs:  1 2.708050 3.555348

2 3.806663 3.806663

3 4.465908 4.204696

Arithmetic mean of logs 3.660207 3.855568

Exp(mean ln) 38.8694 47.2554

N

N
i

i = 1

Y

Downward Bias of Geometric Mean

• Exponentiation of mean of logs yields geometric mean

• In presence of variability in costs, geometric mean 
downwardly biased estimate of arithmetic mean

– All else equal, greater variance, skewness, or 
kurtosis, greater downward bias

– e.g., (25 * 30 * 35)0.333 = 29.7196

(10 * 30 * 50)0.333 = 24.6621

(5 * 30 * 55)0.333 = 20.2062

(1 * 30 * 59)0.333 = 12.0664
• “Smearing” factor attempts to eliminate bias from 

exponentiation of mean of logs

Retransformation Of Log Of Cost (I)

• Duan's common smearing factor:

where in univariate analysis,       = group mean

• Most appropriate when treatment group variances are 
equivalent

i i

N
(Z  - Z )

i=1

1
 = e

N
  ˆ

iẐ
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i îz - z i iˆ(z  - z )e

Retransformation Of Log Of Cost (II)

Φ

Group Observ ln

2 1 2.708050 -.9521568 0.385908

2 2 3.806663 .1464555 1.157723

2 3 4.465908 .805701 2.238265

Mean, 2 -- 3.660207 -- --

3 1 3.555348 -.3002198 0.740655

3 2 3.806663 -.0489054 0.952271

3 3 4.204693 .3491249 1.417826

Mean, 2 -- 3.855568 -- --

Smear 1.148775

Common Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2

(Z )
3

E(Y ) =     e

E(Y ) =     e

 



Group Ф eln Predicted Cost

2 1.148775 x 38.8694 44.7

3 1.148775 x 47.2554 54.3

Common Smearing Retransformation (II)

• Why are retransformed subgroup-specific means -- 44.7 
and 54.3 -- so different from untransformed subgroup 
means of 49?

• Because standard deviations of subgroups' logs are 
substantially different

SD2 = 0.8880; SD3 = 0.3274

• Larger standard deviation for group 2 implies that 
compared with arithmetic mean, its geometric mean has 
greater downward bias than does geometric mean for 
group 3

• Thus, multiplication of 2 groups’ geometric means by a 
common smearing factor cannot give accurate estimates 
for both groups’ arithmetic means
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Subgroup-specific Smearing Factors (I)

• Manning has shown that in face of heteroscedasticity  --
i.e., differences in variance -- use of a common smearing 
factor in retransformation of predicted log of costs yields 
biased estimates of predicted costs

• Obtain unbiased estimates by use of subgroup-specific 
smearing factors

• Manning's subgroup-specific smearing factor:

j

ij j

N
(Z  - Z )

j
i=1j

1
 = e

N
 

ˆ

Subgroup-specific Smearing Factors (II)

Φ2

Φ3

Group Observ ln

2 1 2.708050 -.9521568 0.385908

2 2 3.806663 .1464555 1.157723

2 3 4.465908 .805701 2.238265

Mean, 2 -- 3.660207 -- 1.260632

3 1 3.555348 -.3002198 0.740655

3 2 3.806663 -.0489054 0.952271

3 3 4.204693 .3491249 1.417826

Mean, 2 -- 3.855568 -- --

Smear 1.0369173

i îz - z i iˆ(z  - z )e

Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2 2

(Z )
3 3

E(Y ) =  e

E(Y ) =  e





Group Фi eln Predicted Cost

2 1.260632 x 38.8694 49.00

3 1.0369173 x 47.2554 49.00
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Subgroup-specific Smearing Retransformation (II)

• All else equal, in face of differences in variance (or 
skewness or kurtosis), use of subgroup-specific 
smearing factors yields unbiased estimates of subgroup 
means

• Use of separate smearing factors eliminates efficiency 
gains from log transformation, because cannot assume 
p-value derived for log of cost applies to arithmetic mean 
of cost
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Potential Problems with Substituting Transformed  
Data for Raw Data (I)

P- value for normality = 0.002 and p=0.01 for  two groups

• Log transformation doesn’t always result in normality

Potential Problems with Substituting Transformed  
Data for Raw Data (II)

• P-value from t-test of log cost directly applies to 
difference in log of cost

• Generally also applies to difference in geometric mean of 
cost

– Observe similar p-values for difference in log and 
difference in geometric mean

• P-value for log may or may not be directly applicable to 
difference in arithmetic mean of untransformed cost
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Potential Problems with Substituting Transformed  
Data for Raw Data (III)

• Applicability of p-value for log to difference in arithmetic 
mean of untransformed cost depends on both 
distributions of log being normal and having equal 
variance and thus standard deviation

– If log normally distributed and variances equal, 
inferences about difference in log generally applicable 
to difference in arithmetic mean

– If log either not normally distributed or variances 
unequal, inferences about difference in log generally 
not applicable to difference in arithmetic mean

Response 3: Tests of Means that Avoid Parametric 
Assumptions

• Bootstrap estimates distribution of observed difference in 
arithmetic mean costs

• Yields a test of how likely it is that 0 is included in this dis-
tribution (by evaluating probability that observed  
difference in means is significantly different from 0)
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Bootstrap Simulation

The one-sample case

x  ( )x , x , ... , x1 2 n x*1

x*2

x*B

S( )x

S( )x*1

S( )x*2

S( )*Bx

• Random draw with 
replacement from each 
treatment group (thus 
creating multiple bootstrap 
replicates of the sample)

• Calculate the difference in 
the mean for each bootstrap 
replicate

Bootstrap: Non-parametric and Parametric Tests  

• Nonparametric tests

– P-value:  count the number of replicates for which the 
difference is above and below 0 (yielding a 1-tailed 
test of the hypothesis of a cost difference)

– CI:  Order the differences from highest to lowest; 
identify the difference for the replicates that represent 
the 2.5th and 97.5th percentiles

• Parametric tests:

– Because each bootstrap replicate represents a mean 
difference, when we sum the replicates, the reported 
"standard deviation" is the standard error

 Difference in means / SE = t statistic

 Difference in means + 1.96 SE = 95% CI

Histogram of Bootstrap Results
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Nonparametric Bootstrap and Normality

• Nonparametric bootstrap does not depend on normality, 
so there is no violation of assumptions, but...

• If sample median has smaller relative bias than sample 
mean, may be better to use median whether sample 
mean is analyzed parametrically or nonparametrically

Example: Distribution of Costs, Chapter 5

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Group 0 Group 1

Arith Mean 3015  3040

Std. Dev. 1582.802 1168.737

Quantiles

     5% 899 1426

   25% 1819 2226

   50% 2825.5 2900.5

   75% 3752 3604

   95% 6103 5085

Skewness 1.03501 1.525386

Kurtosis 4.910192 9.234913

Geom Mean 2600.571 2835.971

Mean ln 7.8634864 7.9501397

SD ln .57602998 .37871479

Obs 250 250

Example: P Values from 6 Univariate Tests of 
Difference in Cost

SUMMARY TABLE P-value      95% CI

DIFFERENCE IN ARITHMETIC
MEAN COST:

25.00   SE:  124.44

  t-test, difference in means: 0.8409    -220 to 270

  nonparametric BS, diff in means: 0.8600    -218 to 275

  Wilcoxan rank-sum: 0.3722

  Kolmogorov-Smirnov: 0.0017

  t-test, difference in logs: 0.05

  transformation to normal: Sqrt

  t-test, transformed variable: 0.2907

  test for heteroscedasticity: 0.0000
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Why Do Different Statistical Tests Lead To 
Different Inferences?

• Tests are evaluating differences in different statistics 

– T-test of untransformed costs:  Cannot infer that 
arithmetic means differ

– Bootstrap:  Same (lack of) inference without normality 
assumption

– Wilcoxon rank-sum test: Same inference, but had 
medians differed, p-value would have been significant

– T-test of log costs: Can infer means of logs – and thus 
geometric means – differ

– Kolmogorov-Smirnov test: Can infer distributions  
differ (but not necessarily means or medians)

Summary, Univariate Analysis

• Want statistic that provides best estimate of population 
mean

– Because mean * N is best estimate of what gainers 
gain and losers lose

• Best refers to a measure of error that incorporates both 
bias and variability

• In face of skewness:

– Sample means less biased

– Sample median often less variable

• Transformation/retransformation of limited value in 
presence of heteroscedasticity

Outline (2)

• Part 1.  Univariate analysis

• Part 2.  Multivariable analysis

– Ordinary least squares

 Untransformed cost

 Log of cost

– General linear models (GLM)

– Diagnostic tests

• Summary
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Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting 
use of multivariable analysis may have added benefits:

– Improves power for tests of differences between 
groups (by explaining variation due to other causes)

– Facilitates subgroup analyses for cost-effectiveness 
(e.g., more/less severe; different countries/centers)

– Variations in economic conditions and practice 
pattern differences by provider, center, or country 
may have a large influence on costs and 
randomization may not account for all differences

– Added advantage: Helps explain what is observed 
(e.g., coefficients for other variables should make 
sense economically)

• If treatment not randomly assigned, multivariable 
analysis necessary to adjust for observable imbalances 
between treatment groups, but may NOT be sufficient

Nonrandom Assignment

• Common techniques

– Ordinary least squares regression predicting costs 
after randomization (OLS)

• Ordinary least squares regression predicting log 
transformation of costs after randomization (log OLS)

• Generalized Linear Models )GLM)

• Other techniques:

– Generalized Gamma regression (Manning et al., 
Journal of Health Economics, 2005)

– Extended estimating equations (Basu and Rathouz, 
Biostatistics 2005)

Multivariable Techniques Used for Analysis of Cost



16

• Advantages

– Easy

– No retransformation problem (faced with log OLS)

– Marginal/Incremental effects easy to calculate

• Disadvantages

– Not robust:

 In small to medium sized data set

 In large datasets with extreme observations

– Can produce predictions with negative costs

Y = α + β1X1 + β2X2 + …. + βkXk + Є

Ordinary Least Squares (OLS)

Log Of Costs Ordinary Least Squares (log OLS)

• Advantages

– Widely known transformation for costs

– Common in the literature

– Reduces robustness problem

– Improves efficiency

• Disadvantages

– Retransformation problem can lead to bias

– Coefficients not directly interpretable

– Not easy to implement

– Residual may not be normally distributed even      
after log transformation

lnY = α + β1X1 + β2X2 + ………….βkXk + Є

LOG OLS Percentage Interpretation

• In same way that heteroscedasticity affects log OLS 
estimates of cost differences, it also undermines 
percentage interpretation of coefficients from log OLS

[See appendix slides for examples]
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Problems with ‘Typical” Methods

• Problems with OLS

– Not robust

– Can produce predictions with negative cost

• Problems with log OLS

– Retransformation problem can lead to bias

– Coefficients not directly interpretable

– Residual may not be normally distributed even      
after log transformation

• More generally:

– Assume constant variance

– Assume E(ln(y)/x)=ΣβiXi

Generalized Linear Models (GLM)

• GLM models:

– Don’t require normality or homoscedasticity,

– Evaluate log of mean, not mean of logs, and thus

 Don’t have problems related to retransformation 
from scale of estimation to raw scale

• To build them, must identify "link function" and "family“ 
(based on data)

GLM Relaxes OLS Assumptions

• Ability to choose among different links relaxes 
assumption that E(y/x) = ΣβiXi (OLS) or E(ln(y)/x)=ΣβiXi

(Log OLS)

• Ability to choose among different families relaxes 
assumption of constant variance

– Gauss: constant variance

– Poisson:  variance proportional to mean

– Gamma:  variance proportional to square of mean

– Inverse gauss:  variance proportional to cube of mean
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• Link function directly characterizes how the linear 
combination of the predictors is related to the prediction 
on the original scale

• Examples of links include:

– Identity Link: (used in OLS)

– log link:                              (NOT used in log OLS)

The Link Function

ˆ
i i iY  = β  X

)ˆ i i(  X
iY  = exp 

• Stata’s power link provides a flexible link function
• It allows generation of a wide variety of named and 

unnamed links, e.g.,
– power 2:       = (BiXi)0.5

– power 1 = Identity link;      = BiXi

– power .5 = Square root link;      = (BiXi)2

– power .25:       = (BiXi)4

– power 0 = log link;      = exp(BiXi)
– power -1 = reciprocal link;      = (BiXi)-1

– power -2 = inverse quadratic;      = (BiXi)-0.5

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

The Link Function

ˆ
iu

The Log Link

• Log link most commonly used in literature

• When log link is adopted, we are assuming:

ln(E(y/x))=Xβ

• GLM with a log link differs from log OLS in part because 
in log OLS, we are assuming:

E(ln(y)/x)=Xβ

• ln(E(y/x) ≠ E(ln(y)/x)

i.e. log of the mean cost ≠ mean of the log cost
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ln(E(y/x) ≠ E(ln(y)/x)

Variable Group 1 Group 2

Observations

1 15 35

2 45 45

3 87 67

Arithmetic mean 49 49

Log, arith mean cost 3.8918203 3.8918203 *

Natural log

1 2.708050 3.555348

2 3.806663 3.806662

3 4.465908 4.007333

Arith mean, log cost 3.660207 3.855568 †

* Difference = 0;  † Difference = 0.195361

Comparison of Results of GLM Gamma/Log and 
log OLS Regression

Variable Coefficient SE  z/T p value

GLM, gamma family, log link

Group 2 0.000000 0.467766 0.00 1.000

Constant 3.8918203 0.330762 11.77 0.000

Log OLS

Group 2 0.195361 0.546446 0.36 0.74

Constant 3.660207 0.386395 9.47 0.001

LOG OLS Percentage Interpretation

• In same way that heteroscedasticity affects log OLS 
estimates of cost differences, it also undermines 
percentage interpretation of coefficients from log OLS

[See appendix slides for examples]
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Selecting a Link Function

• While log link is most commonly used in literature, need 
not be the best fitting link

• There is no single test that identifies the appropriate link

• Instead can employ multiple tests of fit

– Pregibon link test evaluates linearity of response on 
scale of estimation

– Modified Hosmer and Lemeshow test evaluates 
systematic bias in fit on raw scale

– Pearson’s correlation test evaluates systematic bias 
in fit on raw scale

– Ideally, all 3 tests will yield nonsignificant p-values

• Specifies distribution that reflects mean-variance 
relationship

• Currently, families for continuous data available in Stata 
include:

– Gaussian (constant variance)

– Poisson (variance is proportional to mean)

– Gamma (variance is proportional to square of mean)

– Inverse gaussian (variance is proportional to cube of 
mean)

• Use of poisson, gamma, and inverse Gausian families 
relaxes assumption of homoscedasticity

Family

• Modified Parks test is a “constructive” test that 
recommends a family given a particular link function

• Implemented after GLM regression that uses the 
particular link

• The test predicts the square of the residuals (res2) as a 
function of the log of the predictions (lnyhat) by use of a 
GLM with a log link and gamma family to

– Stata code

glm res2 lnyhat,link(log) family(gamma), robust

• If weights or clustering are used in the original GLM, 
same weights and clustering should be used for modified 
Park test 

Selecting a Family
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• Recommended family derived from the coefficient for 
lnyhat:

– If coefficient ~=0,  Gaussian

– If coefficient ~=1,  Poisson

– If coefficient ~=2,  Gamma

– If coefficient ~=3,  Inverse Gaussian or Wald

• Given the absence of families for negative coefficients:

– If coefficient < -0.5, consider subtracting all  
observations from maximum-valued observation and 
rerunning analysis

Recommended Family, Modified Park Test

Stata and SAS Code

• Stata Code

glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family / 
log link): 

proc genmod; 

model y=x/ link=linkname dist=familyname; 

run;

• When running gamma/log models, the general SAS code 
drops observations with an outcome of 0

• If you want to maintain these observations and are 
predicting y as a function of x (M Buntin):

proc genmod; 

a = _mean_;

b = _resp_;

d = b/a + log(a)

variance var = a2

deviance dev =d;

model y = x / link = log;

run;

SAS Code for a Gamma Family / Log Link
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. gen res2 = ((cost-yhat)^2)

. gen lnyhat = ln(yhat)

. glm res2 lnyhat , link(log) family(gamma) robust nolog

Generalized linear models                No. of obs      =      200

Optimization     : ML: Newton-Raphson    Residual df     =      198

Scale parameter =  5.37055

Deviance         =  556.0966603          (1/df) Deviance = 2.808569

Pearson          =  1063.368955          (1/df) Pearson  =  5.37055

Variance function: V(u) = u^2            [Gamma]

Link function    : g(u) = ln(u)          [Log]

Standard errors  : Sandwich

Log pseudo-likelihood = -3667.729811     AIC             =  36.6973

BIC                   =-492.9701783

-------------------------------------------------------------------

|             Robust

res2 |    Coef.   Std. Err.    z    P>|z|    [95% Conf. Interval]

-------+-----------------------------------------------------------

lnyhat | .8059514   .6058605   1.33   0.183    -.3815133   1.993416

_cons | 10.04718   5.417169   1.85   0.064    -.5702812   20.66463

-------------------------------------------------------------------

Stata Commands:  Modified Park Test

. test lnyhat==1

( 1) [res2]lnyhat = 1

chi2(  1) =    0.10

Prob > chi2 =    0.7488  → Implies poisson

. test lnyhat==2

( 1) [res2]lnyhat = 2

chi2(  1) =    3.88

Prob > chi2 =    0.0487  → Not gamma

. test lnyhat==3

( 1) [res2]lnyhat = 3

chi2(  1) =   13.11

Prob > chi2 =    0.0003  → Not inverse gaussian

Stata Output, Modified Park Test

GLM Comments (I)

• Advantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not correct family distribution

 Choice of family only affects efficiency if link 
function and covariates are specified correctly

– Gains in precision from estimator that matches data 
generating mechanism

– Avoids retransformation problems of log OLS models
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GLM Comments (II)

• Disadvantages

– Can suffer substantial precision losses

 If heavy-tailed (log) error term, i.e., log-scale 
residuals have high kurtosis (>3)

 If family is misspecified

Retransformation

• GLM avoids problem that simple exponentiation of 
results of log OLS yields biased estimates of predicted 
costs

• GLM does not avoid other complexity of nonlinear 
retransformations (also seen in log OLS models):

– On transformed scale, effect of treatment group is 
estimated holding all else equal; however, 
retransformation (to estimate costs) reintroduces 
covariate imbalances

Recycled Predictions

• For multiplicative models (e.g., log or logit), shouldn’t use 
means of covariates when making predictions

– Mean of retransformations does not equal 
retransformation of mean

• Instead use method of recycled predictions to create an 
identical covariate structure for two groups by:

– Coding everyone as if they were in treatment group 0 
and predicting

– Coding everyone as if they were in treatment group 1 
and predicting 

• Since Stata 11, can be implemented in Stata with 
“margins” command

i0Ẑ

i1Ẑ
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*****glm model (poisson/log)
. glm cost treat $ivar, family(poisson) link(log)

Generalized linear models               No. of obs      =      200
Optimization: ML: Newton-Raphson        Residual df     =      193
                                        Scale parameter =        1
Deviance        =   700567.946          (1/df) Deviance = 3629.886
Pearson         =  791555.8081          (1/df) Pearson  = 4101.325
Variance function: V(u) = u              [Poisson]
Link function    : g(u) = ln(u)          [Log]
Standard errors  : OIM
Log likelihood  = -351346.9719          AIC             =  3513.54
BIC             =  699545.3708
------------------------------------------------------------------
    cost |    Coef.  Std. Err.     z   P>|z|  [95% Conf. Interval]
---------+--------------------------------------------------------
   treat | .4629637  .0015546  297.81  0.000   .4599168   .4660106
     age | .0082989  .0000756  109.72  0.000   .0081507   .0084472
 ejfract |-.0081781  .0001135  -72.07  0.000  -.0084006  -.0079557
     sex |-.0721448  .0016935  -42.60  0.000  -.0754639  -.0688256
etiology | .2498528  .0015617  159.99  0.000   .2467919   .2529137
    race | .0462949  .0023699   19.53  0.000   .0416499   .0509398
   _cons | 8.359824   .005554 1505.18  0.000   8.348939    8.37071
------------------------------------------------------------------

*****glm model (poisson/log)
. glm cost treat $ivar, family(poisson) link(log)

Generalized linear models               No. of obs      =      200
Optimization: ML: Newton-Raphson        Residual df     =      193
                                        Scale parameter =        1
Deviance        =   700567.946          (1/df) Deviance = 3629.886
Pearson         =  791555.8081          (1/df) Pearson  = 4101.325
Variance function: V(u) = u              [Poisson]
Link function    : g(u) = ln(u)          [Log]
Standard errors  : OIM
Log likelihood  = -351346.9719          AIC             =  3513.54
BIC             =  699545.3708
------------------------------------------------------------------
    cost |    Coef.  Std. Err.     z   P>|z|  [95% Conf. Interval]
---------+--------------------------------------------------------
   treat | .4629637  .0015546  297.81  0.000   .4599168   .4660106
     age | .0082989  .0000756  109.72  0.000   .0081507   .0084472
 ejfract |-.0081781  .0001135  -72.07  0.000  -.0084006  -.0079557
     sex |-.0721448  .0016935  -42.60  0.000  -.0754639  -.0688256
etiology | .2498528  .0015617  159.99  0.000   .2467919   .2529137
    race | .0462949  .0023699   19.53  0.000   .0416499   .0509398
   _cons | 8.359824   .005554 1505.18  0.000   8.348939    8.37071
------------------------------------------------------------------

GLM Model Output

Recycled Predictions (II)

replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmptreat

. tabstat pois_1 pois_0 pois_dif

   stats |     pois_1     pois_0   pois_dif
---------+------------------------------
    mean |  10843.55  6825.096  4018.451
----------------------------------------

• Margins command equivalent to

– Generating a temporary 0/1 variable that equals the 
treatment status variable

– Assigning 0s to temporary variable for all 
observations independent of actual treatment status

– Predicting pcost0, the predicted cost had everyone 
been in treatment group 0

– Assigning 1s to temporary variable for all 
observations independent of actual treatment status

– Predicting pcost1, the predicted cost had everyone 
been in treatment group 1

What is “margins” Command Doing?
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Margins

glm cost i.treat dissev bl* race, link(log) 
family(gamma)

margins treat
Predictive margins                 Number of obs = 500
Model VCE    : OIM
Expression   : Predicted mean cost, predict()
------------------------------------------------------

|        Delta-method
|   Margin Std Err     z  P>|z| [95% Conf. Intl]

------+-----------------------------------------------
treat |

0  | 2963.182 75.08546 39.48 0.000 2816.87 3111.199
1  | 3099.562 79.74378 38.87 0.000 2943.17  3255.76

------------------------------------------------------

3099.56 – 2963.18 = 136.38 difference

Special Cases (I)

• A substantial proportion of observations have 0 costs

– May pose problems to regression models

– Commonly addressed by developing a “two-part”
model in which the first part predicts the probability 
that the costs are zero or nonzero and the second 
part predicts the level of costs conditional on there 
being some costs

 1st part : Logit or probit model

 2nd part : GLM model

Special Cases (II)

• Censored costs

– Results derived from analyzing only the completed 
cases or observed costs are often biased

– Need to evaluate the “mechanism” that led to the 
missing data and adopt a method that gives unbiased 
results in the face of missingness

For details see Chapter 6 in Glick HA, Doshi JA, Sonnad SS, 
Polsky D. Economic Evaluation in Clinical Trials, 2007 (Oxford 
University Press).
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• Use mean difference in costs between treatment groups 
estimated from a multivariable model as the numerator 
for a cost-effectiveness ratio

• Establish criteria for adopting a particular multivariable 
model for analyzing the data prior to unblinding the data 
(i.e., the fact that one model gives a more favorable 
result should not be a reason for its adoption)

• Given that no method will be without problems, it may be 
helpful to report the sensitivity of results to different 
specifications of the multivariable model

Multivariate Analysis: Summary/Conclusion

APPENDIX:
Percentage Interpretation of Log OLS Coefficients

Failure of % Interpretation of Log OLS?

Variable Group 1 Group 2 Group 3

Raw cost / Log cost

Obs:  1 12.975 / 2.563 19.4625 / 2.968 38 / 3.638

2 25 / 3.219 37.5 / 3.624 40.547 / 3.702

3 52.025 / 3.952 78.0375 / 4.357 56.453 / 4.033

Mean / Log mean 30 / 3.2445 45 / 3.6500 45 / 3.7912

SD / SD Log 20 / 0.6947 30 / 0.6947 10 / 0.2123

• Groups 1 and 2 differ in SD of cost (20 vs 30) 
(heteroscedasticity on cost scale) but share same SD of 
logs (0.6947) (homoscedasticity on log scale)

• Groups 2 and 3 and 1 and 3 differ in both SD of cost (30 
vs 10 and 20 vs 10) and SD of log cost (0.6947 vs 
0.2123) (heteroscedasticity on cost scale and log scale)
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Failure of % Interpretation of Log OLS

• For difference between G2 vs G1, 0.405 coefficient from 
log OLS predicting log cost ≠ observed 50% difference

– But exp(0.405) - 1 does (0.5 vs 50%)

• For differences between G3 vs G1 and G3 vs G2, neither 
coefficients from log OLS (0.547 and 0.141) nor exp(coef)-1 
(0.727 and 0.152) equal observed % differences (50% 
and 0%)

Variable G2 vs G1 G3 vs G1 G3 vs G2

Group means 45 vs 30 45 vs 30 45 vs 45

Obs % Mean Diff, Cost 50% 50% 0%

Log OLS Coef 0.405 0.547 0.141

exp(coef) - 1 0.50 0.727 0.152

% Interpretation of GLM With Log Link/Gamma Family

• For differences between G2 vs G1 and G3 vs G1, 0.405 
coefficient from GLM predicting cost  ≠ observed 50% 
difference

– But exp(0.405) - 1 does (0.5 vs 50%)

• For difference between groups G3 vs G2, both coefficient 
and exp(0) - 1 equal observed difference (0.0 vs 0%)

Variable G2 vs G1 G3 vs G1 G3 vs G2

Group means 45 vs 30 45 vs 30 45 vs 45

Obs % Mean Diff, Cost 50% 50% 0%

GLM Coef, Cost (log/gam) 0.405 0.405 0.0

exp(coef) - 1 0.50 0.50 0.0

Summary, Percentage Interpretation

• For log OLS:

– Percentage interpretation of coefficient generally 
unreasonable

– Percentage interpretation of exp(coef)-1 reasonable 
when strict homoscedasticity on log scale

– Percentage interpretation of exp(coef)-1 less/un 
reasonable when log SDs differ

• For GLM with log link and gamma family:

– Percentage interpretation of coefficient generally 
unreasonable

– Percentage interpretation of exp(coef)-1 reasonable 
whether or not SDs on log scale are identical


