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Outline

• Part 1.  Univariate analysis

– Policy relevant parameter for CEA

– Cost data 101

– T-tests and response to the violation of normality

– Primer on log cost

– Why do different statistical tests lead to different 
inferences?

• Part 2.  Multivariable analysis

Policy Relevant Parameter for CEA

• “Best estimate” of difference in population mean

– In welfare economics, a project is cost-beneficial if 
winners from any policy gain enough to be able to 
compensate losers and still be better off themselves

• Thus, we need a parameter that allows us to 
determine how much the losers lose, or cost, and 
how much the winners win, or benefit

– From a budgetary perspective, decision makers can 
use arithmetic mean to determine how much they will 
spend on a program
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Other Summary Statistics

• Summary statistics such as median cost may be useful 
in describing the data, but do not describe the difference 
in cost that will be incurred nor the cost saved by treating 
patients with one therapy versus another.  

– Not associated with social efficiency

• Lack of symmetry of cost distribution does not change 
the fact that we are interested in the arithmetic mean

• Even if evaluation of difference in medians or geometric 
satisfies the assumptions of the tests for these statistics, 
they generally do not answer the question we are asking 

• Does not mean median is never a better measure than 
the sample mean

• Relative bias – (observed difference-true difference)2 –
generally used to determine better measure

• When cost data are sufficiently nonnormal, the relative 
bias for the median can be lower than the relative bias 
for the arithmetic mean

Truth in Advertising

Relative Bias:  (Observed – Truth)2
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Are Sample Means Always the Best Estimator?

• Can be shown in simulation that when the log of cost is 
normally distributed, median has lower relative bias 
when the sample sizes are small and the true difference 
between the mean and median is small

• Given that in actual data we never know truth, it is 
difficult to determine whether other parameters will have 
lower relative bias than sample mean

Cost Data 101

• Common feature of cost data is right-skewness (i.e., 
long, heavy, right tails)

• Data tend to be skewed because:

– Can not have negative costs (but can have 0 cost)

– Most severe cases may require substantially more 
services than less severe cases

– Certain very expensive events occur in a relatively 
small number of patients

• A minority of patients are responsible for a high 
proportion of health care costs
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Typical Distribution Of Cost Data (II)

• Heavy tails vs. "outliers“

– Distributions with long, heavy, right tails will have 
means that differ from the median

• Median is not a better measure of the costs on 
average than is the mean

Problem Not Related Solely to “Outliers”

• Distribution when 5 observations with cost > 7000 (i.e., 
3*SD) are eliminated
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Total cost

Full Sample Trimmed (3*SD) *

Group 0 Group 1 Group 0 Group 1

Mean 3015 3040 2910 3010

Median 2826 2901 2813 2885

* p = 0.003 and 0.0001 for nonnormality of groups 0 and 
1, respectively

Mean, SD When 5 Observations with Cost > 7200 
are Eliminated
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Univariate Analysis: Parametric Tests Of Raw Means

• Usual starting point: T-tests and one way ANOVA

– Used to test and estimate CI for differences in 
arithmetic means of total costs, QALYS, etc.

– Makes assumption that the costs are normally 
distributed

– Normality assumption is routinely violated for cost 
data, but t-tests shown to be robust to violations of 
this assumption when:

• Samples moderately large

• Samples are of similar size and skewness

• Skewness is not too extreme

Responses To Violation Of Normality Assumption

• Adopt nonparametric tests of other characteristics of the 
distribution that are not as affected by the nonnormality of 
the distribution (“biostatistical” approach)

• Transform the data to approximate a normal distribution 
(“classic econometric” approach)

• Adopt tests of arithmetic means that avoid parametric 
assumptions

Response 1: Non-parametric Tests of Other 
Characteristics of the Distribution

• Rationale: Can analyze the characteristics that are not 
as affected by the nonnormality of the distribution

– Wilcoxon rank-sum test

• Test of difference in medians

– Kolmogorov-Smirnov test

• Test of difference in the cumulative distribution 
function
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Potential Problem with Testing Other 
Characteristics of the Distribution

• Tests indicate that some measure of the cost distribution 
differs between the treatment groups, such as its shape 
or location, but not necessarily that the arithmetic means 
differ

• The resulting p-values need not be applicable to the 
arithmetic mean

Response 2: Transform the Data (I)

• Transform costs so they approximate a normal 
distribution

– Common transformations

• Log (arbitrary additional transformations required if 
any observation equals 0)

• Square root

– Estimate and draw inferences about differences in 
transformed costs

Estimates and Inferences Not Necessarily 
Applicable to Arithmetic Mean

• Goal is to use these estimates and inferences to 
estimate and draw inferences about differences in 
untransformed costs

– Estimation: Simple exponentiation of the mean of log 
costs results in the geometric mean, which is a biased 
estimate of the arithmetic mean

• Need to apply smearing factor

– Inference: On the retransformed scale, inferences 
about the log of costs translate into inferences about 
differences in the geometric mean rather than the 
arithmetic mean
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Log Transformation of Cost

Raw Cost Group 2 Group 3

Obs:  1 15 35

2 45 45

3 75 55

Arith mean 45 45

Log of arithmetic mean 3.806662 3.806662

Geometric mean 36.993 44.247

Log Cost

Obs:  1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arithmetic mean of logs 3.610734 3.789781

Exp(mean ln) 36.993 44.247

N

N
i

i = 1

Y

Primer On The Log Transformation Of Costs

• Exponentiation of mean of logs yields geometric mean

• In the presence of variability in costs, geometric mean is 
a downwardly biased estimate of the arithmetic mean

– All else equal, the greater the variability, skewness, or 
kurtosis, the greater the downward bias

– e.g., (25 * 30 * 35)0.333 = 29.7196

(10 * 30 * 50)0.333 = 24.6621

(5 * 30 * 55)0.333 = 20.2062

(1 * 30 * 59)0.333 = 12.0664

• “Smearing” factor attempts to eliminate bias from   
simple exponentiation of the mean of the logs

Retransformation Of The Log Of Cost (I)

• Duan's common smearing factor:

where in univariate analysis,       = the group mean

• Most appropriate when treatment group variances 
are equivalent
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i îz - z i iˆ(z  - z )e

Retransformation Of The Log Of Cost (II)

Φ

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734 -- --

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  -- --

Smear 1.116732 

-0.9026834 0.4054801

• Retransformation formula

• Retransformation

Common Smearing Retransformation (I)

2

3

(Z )
2

(Z )
3

E(Y ) =     e

E(Y ) =     e

 



Group Ф e(lnhat) Predicted cost

2 1.116732 36.993 41.3

3 1.116732 44.247 49.4

Common Smearing Retransformation (II)

• Why are the retransformed subgroup-specific means --
41.3 and 49.4 -- so different from the untransformed 
subgroup means of 45?

• Because the standard deviations of the subgroups' logs 
are substantially different

SD2 = 0.8224; SD3 = 0.2265

• The larger standard deviation for group 2 implies that 
compared with the arithmetic mean, its geometric mean 
has greater downward bias than does the geometric 
mean for group 3

• Thus, multiplication of the 2 groups’ geometric means by 
a common smearing factor cannot yield accurate 
estimates for both groups’ arithmetic means
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Subgroup-specific Smearing Factors (I)

• Manning has shown that in the face of differences in 
variance – i.e., heteroscedasticity -- use of a common 
smearing factor in the retransformation of the 
predicted log of costs yields biased estimates of 
predicted costs

• We obtains unbiased estimates by use of subgroup-
specific smearing factors

• Manning's subgroup-specific smearing factor:
j

ij j

N
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j
i=1j

1
 = e

N
 

ˆ

Subgroup-specific Smearing Factors (II)

i i
ˆz  - z i iˆ(z  - z )e

Φ2

Φ3

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734  --     1.21644

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  --     1.0170245

-0.9026834 0.4054801

Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2 2

(Z )
3 3

E(Y ) =  e

E(Y ) =  e





Group Фi e(ln) Predicted cost

2 1.21644 36.993 45.00

3 1.0170245 44.247 45.00
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Subgroup-specific Smearing Retransformation (II)

• All else equal, in the face of differences in variance (or 
skewness or kurtosis), use of subgroup-specific 
smearing factors yield unbiased estimates of subgroup 
means

• Use of separate smearing factors eliminates efficiency 
gains from log transformation, because we cannot 
assume that p-value derived for the log of cost applies to 
the arithmetic mean of cost
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Potential Problems with Testing Transformation of 
the Data (I)

P- value for normality = 0.002 and p=0.01 for the  two groups

• Log transformation doesn’t always result in normality

Potential Problems with Testing Transformation of 
the Data (II)

• P-value from t-test of log cost has direct applicability to 
the difference in the log of cost

• Generally also applies to the difference in the geometric 
mean of cost

– Observe similar p-values for difference in log and 
difference in geometric mean

• P-value for log cost may or may not be directly 
applicable to difference in arithmetic mean of 
untransformed cost
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Potential Problems with Testing Transformation of 
the Data (III)

• Applicability of p-value for log to the difference in the 
arithmetic mean of untransformed cost depends on 
whether the two distributions of the log are normal and 
whether they have equal variance

– If log cost is normally distributed and if the variances 
are equal, inferences about the difference in log cost 
are generally applicable to the difference in arithmetic 
mean cost

– If log cost is normally distributed and if the variances 
are unequal, inferences about the difference in log 
cost generally will not be applicable to the     
difference in arithmetic mean cost

Response 3: Tests of Means that Avoid Parametric 
Assumptions

• Bootstrap estimates the distribution of the observed 
difference in arithmetic mean costs

• Yields a test of how likely it is that 0 is included in this dis-
ribution (by evaluating the probability that the observed 
difference in means is significantly different from 0)
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Implementation of Bootstrap

• Random draw with replacement from each treatment 
group (thus creating multiple samples)

• Calculate the difference in the mean for each sample

• For the percentile method:

– Count the number of replicates for which the 
difference is above and below 0 = 1-tailed p-value

– Order and identify 2.5th and 97.5th percentile = 95% CI

• For parametric tests:

– Because each bootstrap replicate represents a mean 
difference, when we sum the replicates, the reported 
"standard deviation" is the standard error

• Difference in means / SE = t statistic

• Difference in means + 1.96 SE = 95% CI

Example: Distribution of Costs, Chapter 5

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Group 0 Group 1

Arith Mean 3015  3040

Std. Dev. 1582.802 1168.737

Quantiles

     5% 899 1426

   25% 1819 2226

   50% 2825.5 2900.5

   75% 3752 3604

   95% 6103 5085

Skewness 1.03501 1.525386

Kurtosis 4.910192 9.234913

Geom Mean 2600.571 2835.971

Mean ln 7.8634864 7.9501397

SD ln .57602998 .37871479

Obs 250 250

Example: P Values from 6 Univariate Tests of the 
Difference in Cost

SUMMARY TABLE P-value      95% CI

DIFFERENCE IN ARITHMETIC
MEAN COST:

25.00   SE:  124.44

  t-test, difference in means: 0.8409    -220 to 270

  nonparametric BS, diff in means: 0.8600    -218 to 275

  Wilcoxan rank-sum: 0.3722

  Kolmogorov-Smirnov: 0.0017

  t-test, difference in logs: 0.05

  transformation to normal: Sqrt

  t-test, transformed variable: 0.2907

  test for heteroscedasticity: 0.0000
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Why Do Different Statistical Tests Lead To 
Different Inferences?

• The tests are evaluating differences in different statistics 

– T-test of untransformed costs indicates we cannot 
infer that the arithmetic means are different

– Bootstrap leads to same (lack of) inference and does 
not make the normality assumption

– Wilcoxon rank-sum test also leads to the same 
inference, but its p-value relates more to the 
probability that the medians differ

– T-test of log costs indicates we can infer that the 
mean of the logs are different, and thus the  
geometric means of cost are different

– Kolmogorov-Smirnov test indicates we can infer     
that the distributions are different

Outline for Part 2

• Part 1.  Univariate analysis

• Part 2.  Multivariable analysis

– Ordinary least squares

• Untransformed cost

• Log of cost

– General linear models (GLM)

– Diagnostic tests

Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting 
use of multivariable analysis may have added benefits:

– Improves the power for tests of differences between 
groups (by explaining variation due to other causes)

– Facilitates subgroup analyses for cost-effectiveness 
(e.g., more/less severe; different countries/centers)

– Variations in economic conditions and practice 
pattern differences by provider, center, or country 
may have a large influence on costs and the 
randomization may not account for all differences

– Added advantage: Helps explain what is observed 
(e.g., coefficients for other variables should make 
sense economically)
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• If treatment is not randomly assigned, multivariable 
analysis is necessary to adjust for observable 
imbalances between treatment groups, but it may NOT 
be sufficient

Multivariable Analysis Of Economic Outcomes (II)

• Ordinary least squares regression predicting costs after 
randomization

• Ordinary least squares regression predicting the log 
transformation of costs after randomization

• Generalized Linear Models

• Other techniques:

– Generalized Gamma regression (Manning et al., 
NBER technical working paper 293)

– Extended estimating equations (Basu and Rathouz, 
Biostatistics 2005)

Common Multivariable Techniques Used for the 
Analysis of Cost (I)

Problems with ‘Typical” Methods

• Problems with OLS

– Not robust

– Can produce predictions with negative cost

• Problems with log OLS

– Retransformation problem can lead to bias

– Coefficients not directly interpretable

– Residual may not be normally distributed even      
after log transformation

• More generally:

– Assume E(y/x) = ΣβiXi (OLS) OR E(ln(y)/x)=ΣβiXi (log 
OLS)

– Assume constant variance
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Generalized Linear Models (GLM)

• GLM models have the advantages of the log models, but

– Don’t require normality or homoscedasticity,

– Evaluate the log of the mean, not the mean of the 
logs, and thus

– Don’t raise problems related to retransformation from 
the scale of estimation to the raw scale

• To build them, we must identify a "link function" and a 
"family“ (based on the data)

GLM Relaxes OLS Assumptions

• Ability to choose among different links relaxes 
assumption that E(y/x)= ΣβiXi (OLS) or E(ln(y)/x)=ΣβiXi

(Log OLS)

• Ability to choose among different families relaxes 
assumption of constant variance

– Gauss: constant variance

– Poisson:  variance proportional to mean

– Gamma:  variance proportional to square of mean

– Inverse gauss:  variance proportional to cube of mean

• Link function directly characterizes how the linear 
combination of the predictors is related to the prediction 
on the original scale

• While log link is most commonly used in literature, need 
not be the best fitting link

• Stata’s power link provides a flexible link function

– It allows generation of a wide variety of named and 
unnamed links, e.g.,

• power 1 = Identity link = BiXi

• power .5 = Square root link = (BiXi)2

• power 0 = log link = exp(BiXi)

• power -1 = reciprocal link = 1/(BiXi)

The Link Function
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The Log Link

• Log link is most commonly used in literature

• When we adopt the log link, we are assuming:

ln(E(y/x))=Xβ

• GLM with a log link differs from log OLS in part because 
in log OLS, we are assuming:

E(ln(y)/x)=Xβ

• ln(E(y/x) ≠ E(ln(y)/x)

i.e. log of the mean ≠ mean of the log costs

ln(E(y/x) ≠ E(ln(y)/x)

Variable Group 2 Group 3

Observations

1 15 35

2 45 45

3 75 55

Arithmetic mean 45 45

Log, arith mean cost 3.806662 3.806662 *

Natural log

1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arithmetic mean 3.610734 3.789781 †

* Difference = 0;  † Difference = 0.179047

Comparison of Results of GLM and log OLS 
Regression

Variable Coefficient SE  z/T p value

GLM, gamma family, log link

Group 3 0.000000 0.405730 0.00 1.000

Constant 3.806662 0.286894 13.27 0.000

Log OLS

Group 3 0.179048 0.492494 0.36 0.74

Constant 3.610734 0.348246 10.32 0.000
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Selecting a Link Function

• There is no single test that identifies the appropriate link
• Instead can employ multiple tests of fit

– Pregibon link test checks linearity of response on 
scale of estimation

– Modified Hosmer and Lemeshow test checks for 
systematic bias in fit on raw scale

– Pearson’s correlation test checks for systematic bias 
in fit on raw scale

• Ideally, all 3 tests will yield nonsignificant p-values

The Family

• Specifies the distribution that reflects the mean-variance 
relationship

– Gaussian:  Constant variance

– Poisson:  Variance is proportional to mean

– Gamma:  Variance is proportional to square of mean

– Inverse Gaussian or Wald:  Variance is proportional 
to cube of mean

• Use of the poisson, gamma, and inverse Gausian 
families relax the assumption of homoscedasticity

• A “constructive” test that recommends a family given a 
particular link function

• Implemented after GLM regression that uses the 
particular link

• The test predicts the square of the residuals (res2) as a 
function of the log of the predictions (lnyhat) by use of a 
GLM with a log link and gamma family to

– Stata code

glm res2 lnyhat,link(log) family(gamma), robust

• If weights or clustering are used in the original GLM, 
same weights and clustering should be used for modified 
Park test 

Modified Park Test
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• Recommended family derived from the coefficient for 
lnyhat:

– If coefficient ~=0,  Gaussian

– If coefficient ~=1,  Poisson

– If coefficient ~=2,  Gamma

– If coefficient ~=3,  Inverse Gaussian or Wald

• Given the absence of families for negative coefficients:

– If coefficient < -0.5, consider subtracting all  
observations from maximum-valued observation and 
rerunning analysis

Recommended Family, Modified Park Test

Stata and SAS Code

• STATA code:

glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family / 
log link): 

proc genmod; 

model y=x/ link=linkname dist=familyname; 

run;

• When running gamma/log models, the general SAS code 
drops observations with an outcome of 0

• If you want to maintain these observations and are 
predicting y as a function of x (M Buntin):

proc genmod; 

a = _mean_;

b = _resp_;

d = b/a + log(a)

variance var = a2

deviance dev =d;

model y = x / link = log;

run;

SAS Code for a Gamma Family / Log Link
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GLM Comments (I)

• Advantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even if not the correct family distribution

• Choice of family only affects efficiency if link 
function and covariates are specified correctly

– Gains in precision from estimator that matches data 
generating mechanism

– Avoids retransformation problems of log OLS models

GLM Comments (II)

• Disadvantages

– Can suffer substantial precision losses

• If heavy-tailed (log) error term, i.e., log-scale 
residuals have high kurtosis (>3)

• If family is misspecified

Retransformation

• GLM avoids the problem that simple exponentiation of 
the results of log OLS yields biased estimates of 
predicted costs

• It does not avoid the other complexity of nonlinear 
retransformations (also seen in log OLS models):

– On the transformed scale, the effect of the treatment 
group is estimated holding all else equal; however, 
retransformation (to estimate costs) reintroduces the 
covariate imbalances
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Recycled Predictions

• Do not use the means of the covariates to avoid the 
reintroduction of covariate imbalance, because the mean 
of nonlinear retransformations does not equal the linear 
retransformation of the mean

• Rather, use the method of recycled predictions to create 
an identical covariate structure for the two groups by:

– Coding everyone as if they were in treatment group 0 
and predicting 

– Coding everyone as if they were in treatment group 1 
and predicting 

i0Ẑ

i1Ẑ

• Basu and Rathouz (2005) have proposed use of 
extended estimating equations (EEE) which estimate the 
link function and family along with the coefficients and 
standard errors

• Tends to need a large number of observations 
(thousands not hundreds) to converge

• Currently can’t take the results and use them with a 
simple GLM command (makes bootstrapping resulting 
models cumbersome)

Extended Estimating Equations

Special Cases (I)

• A substantial proportion of observations have 0 costs

– May pose problems to regression models

– Commonly addressed by developing a “two-part” 
model in which the first part predicts the probability 
that the costs are zero or nonzero and the second 
part predicts the level of costs conditional on there 
being some costs

• 1st part : Logit or probit model

• 2nd part : log OLS or GLM model
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Special Cases (II)

• Censored costs

– Results derived from analyzing only the completed 
cases or observed costs are often biased

– Need to evaluate the “mechanism” that led to the 
censored/missing data and adopt a method that gives 
unbiased results in the face of missingness

Which Statistic Should Be Used To Summarize 
Cost Data?

• Cost-effectiveness ratios (ΔC /ΔE) and NMB ([WTP ΔE] -
ΔC) require an estimate of population differences in cost 
and effect

• Unless we are confident that some measure other than 
the sample mean is a better estimate of these 
differences in the population, we should evaluate 
differences in sample/arithmetic mean

– Parametric test of means

– Non-parametric test of means (e.g., bootstrap 
methods)

Multivariate Analysis: Summary/Conclusion

• Use mean difference in costs between treatment groups 
estimated from a multivariable model as the numerator 
for a cost-effectiveness ratio

• Establish criteria for adopting a particular multivariable 
model for analyzing the data prior to unblinding the data 
(i.e., the fact that one model gives a more favorable 
result should not be a reason for its adoption)

• Given that no method will be without problems, it may be 
helpful to report the sensitivity of our results to different 
specifications of the multivariable model


