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• Part 1.  Univariate analysis

– Policy relevant parameter for CEA

– Cost data 101

– T-tests

– Response to the violation of normality

– Primer on log cost

– Why do different statistical tests lead to different 
inferences?

• Part 2.  Multivariable analysis

Policy Relevant Parameter for CEA (I)

• Policy relevant parameter:  differences in the arithmetic, 
or sample, mean

– In welfare economics, a project is cost-beneficial if the 
winners from any policy gain enough to be able to 
compensate the losers and still be better off 
themselves

• Thus, we need a parameter that allows us to 
determine how much the losers lose, or cost, and 
how much the winners win, or benefit

– From a budgetary perspective, decision makers can 
use the arithmetic mean to determine how much they 
will spend on a program
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• Other summary statistics such as median cost may be 
useful in describing the data, but do not provide 
information about the difference in cost that will be 
incurred or the cost saved by treating patients with one 
therapy versus another

– They thus are not associated with social efficiency

• Lack of symmetry of cost distribution does not change 
fact that we are interested in the arithmetic mean

• Evaluating some other difference, be it in medians or 
geometric means, simply because the cost distribution 
satisfies the assumptions of the tests for these statistics, 
may be tempting, but does not answer the question     
we are asking

Policy Relevant Parameter for CEA (II)

Cost Data 101

• Common feature of cost data is right-skewness (i.e., 
long, heavy, right tails)

• Data tend to be skewed because:

– Can not have negative costs

– Most severe cases may require substantially more 
services than less severe cases

– Certain events, which can be very expensive, occur in 
a relatively small number of patients

• A minority of patients are responsible for a high 
proportion of health care costs
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Typical Distributions Of Cost Data (I)
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Typical Distribution Of Cost Data (II)

• Heavy tails vs. "outliers“

– Distributions with long, heavy, right tails will have 
means that differ from the median

• Median is not a better measure of the costs on 
average than is the mean

Problem Not Related Solely to “Outliers”

• Distribution when 5 observations with cost > 7000 are eliminated
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Total cost

Full Sample Trimmed (3*SD) *

Group 0 Group 1 Group 0 Group 1

Mean 3015 3040 2927 3010

Median 2826 2901 2816 2885

* p = 0.003 and 0.0001 for nonnormality of groups 0 and 
1, respectively

Mean, SD When 5 Observations with Cost > 7000 
are Eliminated
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Univariate And Multivariable Analyses Of 
Economic Outcomes

• Analysis plans for economic assessments should 
routinely include univariate and multivariable methods for 
analyzing the trial data

• Univariate analyses are used for the predictors of 
economic outcomes

– Demographic characteristics, clinical history, length of 
stay, and other resource use before entry of study 
participants into the trial

• Univariate and multivariable analyses should be used for 
the economic outcome data

– Total costs, hospital days, quality-adjusted life     
years

Univariate Analysis Of Costs

• Report:

– Arithmetic means and their difference

• Economic analysis is based on differences in 
arithmetic mean costs (because n x mean = total), 
not median costs; thus means are the statistic of 
interest

– Measures of variability and precision, such as:

• Standard deviation

• Quantiles such as 5%, 10%, 50%,... 

– An indication of whether or not the difference in 
arithmetic means 

• Occurred by chance and is economically 
meaningful

Univariate Analysis: Parametric Tests Of Raw 
Means

• Usual starting point: T-tests and one way ANOVA

– Used to test for differences in arithmetic means in 
total costs, QALYS, etc.

– Makes assumption that the costs are normally 
distributed

– Normality assumption is routinely violated for cost 
data, but in large samples t-tests have been shown to 
be robust to violations of this assumption when:

• Samples moderately large

• Samples are of similar size and skewness

• Skewness is not too extreme
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Responses To Violation Of Normality Assumption

• Adopt nonparametric tests of other characteristics of the 
distribution that are not as affected by the nonnormality of 
the distribution (“biostatistical” approach)

• Transform the data so they approximate a normal 
distribution (“classic econometric” approach)

• Adopt tests of arithmetic means that avoid parametric 
assumptions (most recent development)

• OBSERVATION: If we abandon statistical testing of the 
arithmetic mean because distributional assumptions of 
the t-test are violated, does not imply that we are not 
interested in differences in the arithmetic mean

Response 1: Non-parametric Tests of Other 
Characteristics of the Distribution

• Rationale: Can analyze the characteristics that are not 
as affected by the nonnormality of the distribution

– Wilcoxon rank-sum test

– Kolmogorov-Smirnov test

Potential Problem with Testing Other 
Characteristics of the Distribution

• Tests indicate that some measure of the cost distribution 
differs between the treatment groups, such as its shape 
or location, but not necessarily that the arithmetic means 
differ

• The resulting p-values need not be applicable to the 
arithmetic mean

• While we might decide to compare cost by use of tests 
like the Mann-Whitney U test, the numerator and 
denominator of the cost-effectiveness ratio should never 
be represented as a difference in median cost or effect
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Response 2: Transform the Data

• Transform costs so they approximate a normal 
distribution

– Common transformations

• Log (arbitrary additional transformations required if 
any observation equals 0)

• Square root

– Estimate and draw inferences about differences in 
transformed costs

Estimates and Inferences Not Necessarily 
Applicable to Arithmetic Mean

• Goal is to use these estimates and inferences to 
estimate and draw inferences about differences in 
untransformed costs

– Estimation: Simple exponentiation of mean of log 
costs results in geometric mean, which is a biased 
estimate of the arithmetic mean

• Need to apply smearing factor 

– Inference: On the retransformed scale, inferences 
about the log of costs translate into inferences about 
differences in the geometric mean rather than the 
arithmetic mean

Primer On The 
Log Transformation Of Costs
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Primer on the Log Transformation of Cost

N

N
i

i = 1

Y

Raw Cost Group 2 Group 3

Obs:  1 15 35

2 45 45

3 75 55

Arith mean 45 45

Geom mean 36.933 44.247

Log of arith mean 3.806662 3.806662

Log Cost

Obs:  1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arith mean of logs 3.610734 3.789781

Exp(mean ln) 36.993 44.247

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Primer On The Log Transformation Of Costs

• Observation: Simple exponentiation of the mean of the 
logs yields the geometric mean of costs, which in the 
presence of variability in costs (variance, skewness, 
kurtosis) is a biased estimate of the arithmetic mean

– All else equal, the greater the variance, the 
skewness, or kurtosis, the greater the downward bias 
of the exponentiated mean of the logs

– e.g., (25 * 30 * 35)0.333 = 29.7196

(10 * 30 * 50)0.333 = 24.6621

(5 * 30 * 55)0.333 = 20.2062

(1 * 30 * 59)0.333 = 12.0664
• “Smearing” factor attempts to eliminate bias from   

simple exponentiation of the mean of the logs

Retransformation Of The Log Of Cost (I)

• Duan's common smearing factor:

where in univariate analysis,       = the group mean

• Most appropriate when treatment group variances 
are equivalent

i i

N
(Z  - Z )

i=1

1
 = e

N
  ˆ

iẐ
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i îz - z i iˆ(z  - z )e

Retransformation Of The Log Of Cost (II)

Φ

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734 -- --

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  -- --

Smear 1.116732 

-0.9026834 0.4054801

• Retransformation formula

• Retransformation

Common Smearing Retransformation (I)

2

3

(Z )
2

(Z )
3

E(Y ) =     e

E(Y ) =     e

 



Group Ф e(ln) Predicted cost

2 1.116732 36.993 41.3

3 1.116732 44.247 49.4

Common Smearing Retransformation (II)

• Why are the retransformed subgroup-specific means --
41.3 and 49.4 -- so different from the untransformed 
subgroup means of 45?

• Because the standard deviations of the subgroups' logs 
are substantially different

SD2 = 0.8224; SD3 = 0.2265

• The larger standard deviation for group 2 implies that 
compared with the arithmetic mean, its geometric mean 
has greater downward bias than does the geometric 
mean for group 3

• Thus, multiplication of the 2 groups’ geometric means 
by a common smearing factor cannot give accurate 
estimates for both groups’ arithmetic means
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Log Transformations and Normal Assumptions

• Log transformations and normal assumptions:

– If met, t-test of the log may be more efficient than t-
test of cost

– If not met there are no efficiency gains

– In either case, retransformation translates differences 
in variance, skewness, and kurtosis into       
differences in means

Subgroup-specific Smearing Factors (I)

• Manning has shown that in the face of 
heteroscedasticity – i.e., differences in variance -- use 
of a common smearing factor in the retransformation 
of the predicted log of costs yields biased estimates of 
predicted costs

• We obtain unbiased estimates by use of subgroup-
specific smearing factors

• Manning's subgroup-specific smearing factor:

j

ij j

N
(Z  - Z )

j
i=1j

1
 = e

N
 

ˆ

Subgroup-specific Smearing Factors (II)

i i
ˆz  - z i iˆ(z  - z )e

Φ2

Φ3

Group Observ ln

  2 1 2.708050 -0.9026834 0.4054801

  2 2 3.806663 0.1959289 1.216440

  2 3 4.317488 0.7067545 2.027401

Mean, 2 -- 3.610734  --     1.21644

  3 1 3.555348 -0.2344332 0.7910191

  3 2 3.806663 0.0168812 1.017025

  3 3 4.007333 0.2175519 1.24303

Mean, 3 -- 3.789781  --     1.0170245

-0.9026834 0.4054801
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Subgroup-specific Smearing Retransformation (I)

• Retransformation formulas

• Retransformation

2

3

(Z )
2 2

(Z )
3 3

E(Y ) =  e

E(Y ) =  e





Group Фi e(ln) Predicted cost

2 1.21644 36.993 45.00

3 1.0170245 44.247 45.00

Subgroup-specific Smearing Retransformation (II)

• All else equal, in the face of differences in variance (or 
skewness or kurtosis), use of subgroup-specific 
smearing factors yield unbiased estimates of subgroup 
means

• Use of separate smearing factors eliminates efficiency 
gains from log transformation, because we cannot 
assume that p-value derived for the log of cost applies to 
the arithmetic mean of cost
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Potential Problems with Testing Transformation of 
the Data (I)

P- value for normality = 0.002 and p=0.01 for the  two groups

• Log transformation doesn’t always result in normality
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Potential Problems with Testing Transformation of 
the Data (II)

• When we use a t-test to evaluate log cost, the resulting 
p-value has direct applicability to the difference in the log 
of cost

• It generally also applies to the difference in the 
geometric mean of cost (i.e., we see similar p-values for 
the difference in the log and the difference in the 
geometric mean)

• The p-value for the log may or may not be directly 
applicable to the difference in arithmetic mean of 
untransformed cost

Potential Problems with Testing Transformation of 
the Data (III)

• Whether the p-value for the log is applicable to the 
difference in the arithmetic mean of untransformed cost 
depends on whether the two distributions of the log are 
normal and whether they have equal variance and thus 
standard deviation

– If log cost is normally distributed and if the variances 
are equal, inferences about the difference in log cost 
are generally applicable to the difference in arithmetic 
mean cost

– If log cost is normally distributed and if the variances 
are unequal, inferences about the difference in log 
cost generally will not be applicable to the     
difference in arithmetic mean cost

Potential Problems with Testing Transformation of 
the Data (IV)

• For economic analysis, the outcome of interest is the 
difference in untransformed costs (e.g., “Congress does 
not appropriate log dollars. First Bank will not cash a 
check for log dollars”)

• Thus, the results on the transformed scale must be 
retransformed to the original scale

• “There is a very real danger that the log scale results 
may provide a very misleading, incomplete, and biased 
estimate...on the untransformed scale, which is usually 
the scale of ultimate interest” (Manning, 1998)

• “This issue of retransformation...is not unique to the   
case of a logged dependent variable. Any power 
transformation of y will raise this issue”
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Response 3: Tests of Means that Avoid Parametric 
Assumptions

• Bootstrap estimates the distribution of the observed 
difference in arithmetic mean costs

• Yields a test of how likely it is that 0 is included in this dis-
tribution (by evaluating the probability that the observed 
difference in means is significantly different from 0)
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The one-sample case
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S( )x*2
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• Random draw with 
replacement from each 
treatment group (thus 
creating multiple bootstrap 
replicates of the sample)

• Calculate the difference in 
the mean for each bootstrap 
replicate
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Bootstrap: Non-parametric and Parametric Tests  

• Nonparametric tests

– P-value:  count the number of replicates for which the 
difference is above and below 0 (yielding a 1-tailed 
test of the hypothesis of a cost difference)

– CI:  Order the differences from highest to lowest; 
identify the difference for the replicates that represent 
the 2.5th and 97.5th percentiles

• Parametric tests:

– Because each bootstrap replicate represents a mean 
difference, when we sum the replicates, the reported 
"standard deviation" is the standard error

• Difference in means / SE = t statistic

• Difference in means + 1.96 SE = 95% CI

Histogram of Bootstrap Results
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Example: Distribution of Costs, Chapter 5

Data taken from Glick HA, Doshi JA, Sonnad SS, Polsky D. 
chapter 5 in Economic Evaluation in Clinical Trials, 2007.

Group 0 Group 1

Arith Mean 3015  3040

Std. Dev. 1582.802 1168.737

Quantiles

     5% 899 1426

   25% 1819 2226

   50% 2825.5 2900.5

   75% 3752 3604

   95% 6103 5085

Skewness 1.03501 1.525386

Kurtosis 4.910192 9.234913

Geom Mean 2600.571 2835.971

Mean ln 7.8634864 7.9501397

SD ln .57602998 .37871479

Obs 250 250
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Example: P Values from 6 Univariate Tests of the 
Difference in Cost

SUMMARY TABLE P-value      95% CI

DIFFERENCE IN ARITHMETIC
MEAN COST:

25.00   SE:  124.44

  t-test, difference in means: 0.8409    -220 to 270

  nonparametric BS, diff in means: 0.8600    -218 to 275

  Wilcoxan rank-sum: 0.3722

  Kolmogorov-Smirnov: 0.0017

  t-test, difference in logs: 0.05

  transformation to normal: Sqrt

  t-test, transformed variable: 0.2907

  test for heteroscedasticity: 0.0000

Why Do Different Statistical Tests Lead To 
Different Inferences?

• The tests are evaluating differences in different statistics 

– T-test of untransformed costs indicates we cannot 
infer that the arithmetic means are different

– Bootstrap leads to same (lack of) inference and does 
not make the normality assumption

– Wilcoxon rank-sum test also leads to the same 
inference, but its p-value relates more to the 
probability that the medians differ

– T-test of log costs indicates we can infer that the 
mean of the logs are different, and thus the  
geometric means of cost are different

– Kolmogorov-Smirnov test indicates we can infer   that 
the distributions are different

Univariate Analysis: Summary/Conclusion (I)

• Cost-effectiveness ratios (ΔC /ΔE) and NMB ([WTP ΔE] -
ΔC) require an estimate of ΔC and ΔE, the differences in 
arithmetic means

• If arithmetic means are the most meaningful summary 
statistic of costs, we should test for significant 
differences in arithmetic mean costs

– Parametric test of means

– Non-parametric test of means (e.g., bootstrap 
methods)
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Univariate Analysis: Summary/Conclusion (II)

• Because of distributional problems related to evaluating 
the arithmetic mean, there has been a growing use of 
nonparametric tests such as Wilcoxon and KS tests

– Problem: Their use divorces hypothesis testing from 
estimation

• i.e., we want to 1) estimate the magnitude of the 
difference in arithmetic means and 2) test whether 
that difference was observed by chance

• Use of tests of medians or distributions to address 
the second task does not help with the first task

• Tests of transformed variables such as the log or   
square root pose similar problems

Outline (2)

• Part 1.  Univariate analysis

• Part 2.  Multivariable analysis

– Ordinary least squares

• Untransformed cost

• Log of cost

– General linear models (GLM)

– Diagnostic tests

• Summary

Multivariable Analysis Of Economic Outcomes (I)

• Even if treatment is assigned in a randomized setting 
use of multivariable analysis may have added benefits:

– Improves the power for tests of differences between 
groups (by explaining variation due to other causes)

– Facilitates subgroup analyses for cost-effectiveness 
(e.g., more/less severe; different countries/centers)

– Variations in economic conditions and practice 
pattern differences by provider, center, or country 
may have a large influence on costs and the 
randomization may not account for all differences

– Added advantage: Helps explain what is observed 
(e.g., coefficients for other variables should make 
sense economically)
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• If treatment is not randomly assigned, multivariable 
analysis is necessary to adjust for observable 
imbalances between treatment groups, but it may NOT 
be sufficient

Multivariable Analysis Of Economic Outcomes (II)

• Common Techniques

– Ordinary least squares regression predicting costs 
after randomization (OLS)

– Ordinary least squares regression predicting the log 
transformation of costs after randomization (log OLS)

– Generalized Linear Models (GLM)

• Other Techniques:

– Generalized Gamma regression (Manning et al. 
Journal of Health Economics 2005)

– Extended estimating equations (Basu and Rathouz, 
Biostatistics 2005)

Multivariable Techniques Used for the 
Analysis of Cost 

Multivariable Analysis

• Different multivariable models make different 
assumptions

– When assumptions are met, coefficient estimates will 
have many desirable properties

– With cost analysis, assumptions are often violated, 
which may produce misleading or problematic 
coefficient estimates

• Bias (consistency)

• Efficiency (precision)
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• Advantages

– Easy

– No retransformation problem (faced with log OLS)

– Marginal/Incremental effects easy to calculate

• Disadvantages

– Not robust:

• In small to medium sized data set

• In large datasets with extreme observations

– Can produce predictions with negative costs

Y = α + β1X1 + β2X2 + …. + βkXk + Є

Ordinary Least Squares (OLS)

Log Of Costs Ordinary Least Squares (log OLS)

• Advantages

– Widely known transformation for costs

– Common in the literature

– Reduces robustness problem

– Improves efficiency

• Disadvantages

– Retransformation problem can lead to bias

– Coefficients not directly interpretable

– Not easy to implement

– Residual may not be normally distributed even      
after log transformation

lnY = α + β1X1 + β2X2 + ………….βkXk + Є

Problems with ‘Typical” Methods

• Problems with OLS

– Not robust

– Can produce predictions with negative cost

• Problems with log OLS

– Retransformation problem can lead to bias

– Coefficients not directly interpretable

– Residual may not be normally distributed even      
after log transformation

• More generally:

– Assume constant variance

– Assume E(ln(y)/x)=ΣβiXi
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Generalized Linear Models (GLM)

• GLM models have the advantages of the log models, but

– Don’t require normality or homoscedasticity,

– Evaluate the log of the mean, not the mean of the 
logs, and thus

– Don’t raise problems related to retransformation from 
the scale of estimation to the raw scale

• To build them, we must identify a "link function" and a 
"family“ (based on the data)

GLM Relaxes OLS Assumptions

• Ability to choose among different families relaxes 
assumption of constant variance

– Gauss: constant variance

– Poisson:  variance proportional to mean

– Gamma:  variance proportional to square of mean

– Inverse gauss:  variance proportional to cube of mean

• Ability to choose among different links relaxes 
assumption that y/x= ΣβiXi (OLS) or E(ln(y)/x)=ΣβiXi (Log 
OLS)

• Link function directly characterizes how the linear 
combination of the predictors is related to the prediction 
on the original scale

– e.g., predictions from the identity link -- which is used 
in OLS -- equal:

The Link Function

ˆ
i i iY  = β  X
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• Stata’s power link provides a flexible link function
• It allows generation of a wide variety of named and 

unnamed links, e.g.,
– power 2:       = (BiXi)0.5

– power 1 = Identity link;      = BiXi

– power .5 = Square root link;      = (BiXi)2

– power .25:       = (BiXi)4

– power 0 = log link;      = exp(BiXi)
– power -1 = reciprocal link;      = (BiXi)-1

– power -2 = inverse quadratic;      = (BiXi)-0.5

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

ˆ
iu

The Link Function

ˆ
iu

The Log Link

• Log link is most commonly used in literature

• When we adopt the log link, we are assuming:

ln(E(y/x))=Xβ

• GLM with a log link differs from log OLS in part because 
in log OLS, we are assuming:

E(ln(y)/x)=Xβ

• ln(E(y/x) ≠ E(ln(y)/x)

i.e. log of the mean ≠ mean of the log costs

ln(E(y/x) ≠ E(ln(y)/x)

Variable Group 1 Group 2

Observations

1 15 35

2 45 45

3 75 55

Arithmetic mean 45 45

Log, arith mean cost 3.806662 3.806662 *

Natural log

1 2.70805 3.555348

2 3.806662 3.806662

3 4.317488 4.007333

Arith mean, log cost 3.610734 3.789781 †

* Difference = 0;  † Difference = 0.179047
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Comparison of Results of GLM Gamma/Log and 
log OLS Regression

Variable Coefficient SE  z/T p value

GLM, gamma family, log link

Group 2 0.000000 0.405730 0.00 1.000

Constant 3.806662 0.286894 13.27 0.000

Log OLS

Group 2 0.179048 0.492494 0.36 0.74

Constant 3.610734 0.348246 10.32 0.000

Selecting a Link Function

• While log link is most commonly used in literature, need 
not be the best fitting link

• There is no single test that identifies the appropriate link

• Instead can employ multiple tests of fit

– Pregibon link test checks linearity of response on 
scale of estimation

– Modified Hosmer and Lemeshow test checks for 
systematic bias in fit on raw scale

– Pearson’s correlation test checks for systematic bias 
in fit on raw scale

– Ideally, all 3 tests will yield nonsignificant p-values

• Specifies the distribution that reflects the mean-variance 
relationship

• Currently, families for continuous data available in Stata 
include:

– Gaussian (constant variance)

– Poisson (variance is proportional to mean)

– Gamma (variance is proportional to square of mean)

– Inverse gaussian (variance is proportional to cube of 
mean)

• Use of the poisson, gamma, and inverse Gausian 
families relaxes the assumption of homoscedasticity

The Family
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• Modified Parks test is a “constructive” test that 
recommends a family given a particular link function

• Implemented after GLM regression that uses the 
particular link

• The test predicts the square of the residuals (res2) as a 
function of the log of the predictions (lnyhat) by use of a 
GLM with a log link and gamma family to

– Stata code

glm res2 lnyhat,link(log) family(gamma), robust

• If weights or clustering are used in the original GLM, 
same weights and clustering should be used for modified 
Park test 

Selecting a Family

• Recommended family derived from the coefficient for 
lnyhat:

– If coefficient ~=0,  Gaussian

– If coefficient ~=1,  Poisson

– If coefficient ~=2,  Gamma

– If coefficient ~=3,  Inverse Gaussian or Wald

• Given the absence of families for negative coefficients:

– If coefficient < -0.5, consider subtracting all  
observations from maximum-valued observation and 
rerunning analysis

Recommended Family, Modified Park Test

Stata and SAS Code

• STATA code:

glm y x, link(linkname) family (familyname)

• General SAS code (not appropriate for gamma family / 
log link): 

proc genmod; 

model y=x/ link=linkname dist=familyname; 

run;
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• When running gamma/log models, the general SAS code 
drops observations with an outcome of 0

• If you want to maintain these observations and are 
predicting y as a function of x (M Buntin):

proc genmod; 

a = _mean_;

b = _resp_;

d = b/a + log(a)

variance var = a2

deviance dev =d;

model y = x / link = log;

run;

SAS Code for a Gamma Family / Log Link

. gen res2 = ((cost-yhat)^2)

. gen lnyhat = ln(yhat)

. glm res2 lnyhat , link(log) family(gamma) robust nolog

Generalized linear models                No. of obs      =      200

Optimization     : ML: Newton-Raphson    Residual df     =      198

Scale parameter =  5.37055

Deviance         =  556.0966603          (1/df) Deviance = 2.808569

Pearson          =  1063.368955          (1/df) Pearson  =  5.37055

Variance function: V(u) = u^2            [Gamma]

Link function    : g(u) = ln(u)          [Log]

Standard errors  : Sandwich

Log pseudo-likelihood = -3667.729811     AIC             =  36.6973

BIC                   =-492.9701783

-------------------------------------------------------------------

|             Robust

res2 |    Coef.   Std. Err.    z    P>|z|    [95% Conf. Interval]

-------+-----------------------------------------------------------

Stata Commands:  Modified Park Test

. test lnyhat==1

( 1) [res2]lnyhat = 1

chi2(  1) =    0.10

Prob > chi2 =    0.7488  → Implies poisson

. test lnyhat==2

( 1) [res2]lnyhat = 2

chi2(  1) =    3.88

Prob > chi2 =    0.0487  → Not gamma

. test lnyhat==3

( 1) [res2]lnyhat = 3

chi2(  1) =   13.11

Prob > chi2 =    0.0003  → Not inverse

gaussian

Stata Output, Modified Park Test
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GLM Comments (I)

• Advantages

– Relaxes normality and homoscedasticity assumptions

– Consistent even with mis-specification of family so 
long as link function and covariates are specified 
correctly

– Gains in precision from estimator that matches data 
generating mechanism

– Avoids retransformation problems of log OLS models

GLM Comments (II)

• Disadvantages

– Can suffer substantial precision losses

• If heavy-tailed (log) error term, i.e., log-scale 
residuals have high kurtosis (>3)

• If family is misspecified

Retransformation (I)

• GLM avoids the problem that simple exponentiation of 
the results of log OLS yields biased estimates of 
predicted costs

• It does not avoid the other complexity of nonlinear 
retransformations (also seen in log OLS models):

– On the transformed scale, the effect of the treatment 
group is estimated holding all else equal; however, 
retransformation (to estimate costs) reintroduces the 
covariate imbalances
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Recycled Predictions (I)

• Do not use the means of the covariates to avoid the 
reintroduction of covariate imbalance, because the mean 
of nonlinear retransformations does not equal the linear 
retransformation of the mean

• Rather, use the method of recycled predictions to create 
an identical covariate structure for the two groups by:

– Coding everyone as if they were in treatment group 0 
and predicting 

– Coding everyone as if they were in treatment group 1 
and predicting 

i0Ẑ

i1Ẑ

*****glm model (poisson/log)
. glm cost treat $ivar, family(poisson) link(log)

Generalized linear models               No. of obs      =      200
Optimization: ML: Newton-Raphson        Residual df     =      193
                                        Scale parameter =        1
Deviance        =   700567.946          (1/df) Deviance = 3629.886
Pearson         =  791555.8081          (1/df) Pearson  = 4101.325
Variance function: V(u) = u              [Poisson]
Link function    : g(u) = ln(u)          [Log]
Standard errors  : OIM
Log likelihood  = -351346.9719          AIC             =  3513.54
BIC             =  699545.3708
------------------------------------------------------------------
    cost |    Coef.  Std. Err.     z   P>|z|  [95% Conf. Interval]
---------+--------------------------------------------------------
   treat | .4629637  .0015546  297.81  0.000   .4599168   .4660106
     age | .0082989  .0000756  109.72  0.000   .0081507   .0084472
 ejfract |-.0081781  .0001135  -72.07  0.000  -.0084006  -.0079557
     sex |-.0721448  .0016935  -42.60  0.000  -.0754639  -.0688256
etiology | .2498528  .0015617  159.99  0.000   .2467919   .2529137
    race | .0462949  .0023699   19.53  0.000   .0416499   .0509398
   _cons | 8.359824   .005554 1505.18  0.000   8.348939    8.37071
------------------------------------------------------------------

*****glm model (poisson/log)
. glm cost treat $ivar, family(poisson) link(log)

Generalized linear models               No. of obs      =      200
Optimization: ML: Newton-Raphson        Residual df     =      193
                                        Scale parameter =        1
Deviance        =   700567.946          (1/df) Deviance = 3629.886
Pearson         =  791555.8081          (1/df) Pearson  = 4101.325
Variance function: V(u) = u              [Poisson]
Link function    : g(u) = ln(u)          [Log]
Standard errors  : OIM
Log likelihood  = -351346.9719          AIC             =  3513.54
BIC             =  699545.3708
------------------------------------------------------------------
    cost |    Coef.  Std. Err.     z   P>|z|  [95% Conf. Interval]
---------+--------------------------------------------------------
   treat | .4629637  .0015546  297.81  0.000   .4599168   .4660106
     age | .0082989  .0000756  109.72  0.000   .0081507   .0084472
 ejfract |-.0081781  .0001135  -72.07  0.000  -.0084006  -.0079557
     sex |-.0721448  .0016935  -42.60  0.000  -.0754639  -.0688256
etiology | .2498528  .0015617  159.99  0.000   .2467919   .2529137
    race | .0462949  .0023699   19.53  0.000   .0416499   .0509398
   _cons | 8.359824   .005554 1505.18  0.000   8.348939    8.37071
------------------------------------------------------------------

GLM Model Output

Recycled Predictions (II)

replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmptreat

. tabstat pois_1 pois_0 pois_dif

   stats |     pois_1     pois_0   pois_dif
---------+------------------------------
    mean |  10843.55  6825.096  4018.451
----------------------------------------
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• Basu and Rathouz (2005) have proposed use of 
extended estimating equations (EEE) which estimate the 
link function and family along with the coefficients and 
standard errors

• Tends to need a large number of observations 
(thousands not hundreds) to converge

• Currently can’t take the results and use them with a 
simple GLM command (makes bootstrapping resulting 
models cumbersome)

Extended Estimating Equations

Special Cases (I)

• A substantial proportion of observations have 0 costs

– May pose problems to regression models

– Commonly addressed by developing a “two-part”
model in which the first part predicts the probability 
that the costs are zero or nonzero and the second 
part predicts the level of costs conditional on there 
being some costs

• 1st part : Logit or probit model

• 2nd part : GLM model

Special Cases (II)

• Censored costs

– Results derived from analyzing only the completed 
cases or observed costs are often biased

– Need to evaluate the “mechanism” that led to the 
missing data and adopt a method that gives unbiased 
results in the face of missingness

For details see Chapter 6 in Glick HA, Doshi JA, Sonnad SS, 
Polsky D. Economic Evaluation in Clinical Trials, 2007 (Oxford 
University Press).
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• Use mean difference in costs between treatment groups 
estimated from a multivariable model as the numerator 
for a cost-effectiveness ratio

• Establish criteria for adopting a particular multivariable 
model for analyzing the data prior to unblinding the data 
(i.e., the fact that one model gives a more favorable 
result should not be a reason for its adoption)

• Given that no method will be without problems, it may be 
helpful to report the sensitivity of our results to different 
specifications of the multivariable model

Multivariate Analysis: Summary/Conclusion


