Sample Size and Power

Henry Glick www.uphs.upenn.edu/dgimhsr

May 12, 2017

Goals of Sample Size and Power Analysis

- · Sample size calculation
 - Given a desired alpha (α) and beta (β), proactively manages probability of saying a difference exists when none does
 - Type 1 error; False positive; alpha; confidence
- Power Analysis
 - Given a desired alpha and a known sample size, proactively understand probability of saying no difference exists when one does

• Type 2 error; False negative; (1-Beta); power

• "Experiment has an 80% chance (power) of concluding with 95% confidence (alpha) that therapies differ"

Other Sample Size Traditions

- Sample size approach described here comes out of frequentist statistical tradition
- Other approaches (cost-effectiveness literature) include:
 Bayesian (O'Hagan and Stevens)
 - Value of information (Koerkamp et al.)
 - Opportunity cost (Gafni et al.)
 - Decision model (Willan and O'Brien)

Sample Size Calculation

- Specify parameters (e.g., expected difference (Δ) and standard deviation (SD)), alpha, and beta and identify sample size per group (N)
 - Assumptions of equivalent N/group or equivalent SD can be relaxed (see later equations)

Not What I Am Going to Talk About

- · If the graph and equations are enlightening, you may know everything you need to know
- I don't find them particularly helpful
- · Hoping to provide some intuitions about power and sample size

Start with Naïve Sample Size Calculation

- · Suppose we guestimate that our experiment will yield - Difference of 10

 - Standard deviation/group of 18.038
- If we run experiment and our data exactly match these assumptions, we need a standard error (SE) of 5.102 for a confidence interval where one confidence limit = 0 (i.e., p = 0.05)
 - (10 1.96*5.102 = 0) (where $1.96 = z_{\alpha}$)
- · Given we know SD, needed SE, and formula for SE which includes sample size/group and SD - can make an initial naïve sample size estimate by substituting equation for SE and solving for N

Naïve Estimate of 25/Group

- CL = Δz_{α} SE = 0
- Δ / z_α = SE
- SE= (2 * (SD / N^{0.5})²)^{0.5}
- $\Delta / z_{\alpha} = (2 * (SD / N^{0.5})^2)^{0.5}$
- Solving for N/group yields:

$$N_{naive} = \frac{2 z_{\alpha}^{2} sd^{2}}{\Lambda^{2}}$$

• Assuming Δ =10; sd=18.038; z=1.96: N=25/group

Effective α

- Using $z_{\alpha} = 1.96$
- Assuming = 0.05; two groups; and no adjustment for multiple tests
- · Results don't depend on assumptions
- What matters is that you use correct z_α after adjustment when calculating both CI and p-values and when calculating N/group
 - e.g., if after adjustment you decide that α = 0.05 when z_{α} = 2.2414, naïve sample size = 33/group

2 * 2.2414² * 18.038² / 10² = 32.69

Simulation to Test 25/Group

- Repeatedly draw 100,000 sets of 2 samples from normal distributions with:
 - 25/group
 - Means of 100 in group 1 and 110 in group 2 ($\Delta \text{=}10)$
 - Common SD of 18.038/group
- Basic Stata command: drawnorm c1 c2, m(100 110) sd(18.038) n(25)

WHAT DO WE EXPECT WILL HAPPEN?

Expectations

- Group 1 mean ≈ 100
- Group 2 mean ≈ 110
 Mean of each SD ≈ 13.038
- ∆ ≈ 10
- SE≈5.102
- % significant ???

mean, Sample 1 99.9999 SD, Sample 1 18.0327 mean, Sample 2 109.987 SD, Sample 2 18.0399 ΔC 9.9878 SE, ΔC 5.1280 Δ 5.1280	Number of draws	100,000
SD, Sample 1 18.0327 mean, Sample 2 109.987 SD, Sample 2 18.0395 ΔC 9.9878 SE, ΔC 5.1280 0.05 % 49.5	mean, Sample 1	99.9999
mean, Sample 2 109.987 SD, Sample 2 18.0395 ΔC 9.9878 SE, ΔC 5.1280 SE, ΔC 49.5	SD, Sample 1	18.0327
SD, Sample 2 18.0395 ΔC 9.9878 SE, ΔC 5.1280 α ≤ 0.05 % 49.5	mean, Sample 2	109.9877
ΔC 9.9878 SE, ΔC 5.1280 p < 0.05 % 49.5	SD, Sample 2	18.0399
SE, ∆C 5.1280	ΔC	9.9878
n < 0.05 % 49.5	SE, ΔC	5.1280
p • 0.00, 70 +0.0	p < 0.05, %	49.5
example1822.dta	example1822.dta	

Number of draws	100,000
% > 10	49.7
% < 5.102	48.7
Significance $- \Delta > 10; SE < 5.102$ $- \Delta > 10; SE > 5.102; \Delta / SE > 1$ $- \Delta < 10; SE < 5.102; \Delta / SE > 1$ Lack of significance	1.96 1.96
– ∆<10; SE>5.102 – ∆<10 [,] SE<5.102 [,] ∆/SE<′	1 96
 – Δ>10; SE>5.102; Δ/SE<1 	1.96

My Expectations							
∆C<10;	SE>5.1	∆C<10;	SE<5.1	∆C>10;	SE>5.1	∆C>10;	SE<5.1
p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05
25,000	0	12,500	12,500	12,500	12,500	0	25,000
0	%	50)%	50)%	10	0%
 50% significance due to ~25% of time Δ > 10 and SE < 5.102 ~12.5% of time Δ > 10, SE > 5.102, Δ/SE > 1.96 ~12.5% of time Δ < 10, SE < 5.102, Δ/SE > 1.96 							

Observed							
∆C<10; SE>5.1	∆C<10; SE<5.1	∆C>10; SE>5.1	∆C>10; SE<5.1				
p>0.05 p<0.05	p>0.05 p<0.05	p>0.05 p<0.05	p>0.05 p<0.05				
25,694 0	21,599 3005	3207 22,379	0 24,116				
0%	12.2%	87.5%	100%				
• 49.5% significance due to $- \sim 25\%$ of time $\Delta > 10$ and SE < 5.102 $- \sim 22\%$ of time $\Delta > 10$, SE > 5.102, but Δ /SE > 1.96 $- \sim 3\%$ of time $\Delta < 10$, SE < 5.102, but Δ /SE > 1.96							

Are We Satisfied with Naïve Sample Size Estimate?

 Only if we are willing to live with designing experiments in which we are likely to detect a significant difference 50% of time

WHAT WENT WRONG?

What Went Wrong?

- Did not account for fact that we cannot expect ∆ and SE to equal 10 and 5.102 in repeated experiments
 - In simulation approximately 50% of time Δ and SE were above 10 and 5.102 and 50% of time Δ and SE were below
- Need to increase sample size so that expected SE is smaller than 5.102, such that we increase likelihood of:
 − Δ>10 and SE<5.102 (primary mechanism)
 - $\Delta < 10$, SE<5.102, Δ /SE>1.96 (secondary mechanism)

Suppose We Simulated 51/Group, Not 25

- Repeatedly draw 100,000 sets of 2 samples from normal distributions with:
 - 51/group
 - Means of 100 in group 1 and 110 in group 2 (Δ =10)
 - Common SD of 18.038/group

WHAT DO WE EXPECT WILL HAPPEN?

Expectations

- Group 1 mean ≈ 100
- Group 2 mean ≈ 110
- Mean of each SD ≈ 13.038
- ∆≈10
- SE < 5.102
- % significant > 50%

lumber of draws	100,000
nean, Sample 1	99.9777
SD, Sample 1	18.0349
nean, Sample 2	110.007
SD, Sample 2	18.0294
ΔC	10.0294
SE, ∆C	3.5804
p < 0.05, %	79.7
% > 10	50.45
% < 5.102	100
example218126.dta	

79.4% Significant							
ΔC<10; SE>5.1 ΔC<10; SE<5.1 ΔC>10; SE>5.1 ΔC>10; SE<5.1							SE<5.1
p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05
0	0	20,298	29,256	0	0	0	50,446
NA 59.0% NA 100%							
NA 59.0% NA 100% • 79.4% significance due to \sim 50.4% of time Δ > 10 and SE < 5.102							

• Further increases in sample size gain power solely from increasing proportion of time Δ < 10, SE < 5.102, but Δ /SE > 1.96

Shifting Sources of Significance							
∆C<10	; SE>5.1	∆C<10	; SE<5.1	∆C>10	; SE>5.1	∆C>10	SE<5.1
p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05
49,553	0	298	25	33,498	16,308	0	318
0% 0.77 33% 100%						0%	
n = 25/G;	power = 0.5	i					
∆C<10	; SE>5.1	∆C<10	; SE<5.1	∆C>10	; SE>5.1	∆C>10	SE<5.1
p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05
25,649	0	21,599	3005	3207	22,379	0	24,116
()%	12	.2%	87	.5%	100%	
n = 51/G;	power = 0.7	994					
∆C<10;	SE>5.1	∆C<10;	SE<5.1	∆C>10;	SE>5.1	∆C>10;	SE<5.1
p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05	p>0.05	p<0.05
0	0	20,298	29,256	0	0	0	50,466
N	A	59.	0%	NA		100%	

How Did We Come Up With 51/Group?

- Expand naïve sample size equation to include z_β (1.96 + 0.84 = 2.80)

$$N = \frac{2 (z_{\alpha} + z_{\beta})^2 \text{ sd}^2}{\Delta^2}$$

- Target SE = 10/2.8 = 3.571 (3.58 in simulation)
- N = 2 * 2.8² * 18.038² / 10² = 51/group
- Power is typically treated as 1-tailed – If $z_{\beta} = 0$, power = 50% (equivalent to naïve sample size); if $z_{\beta} = 0.84$, power = 80%; if $z_{\beta} = 1.28$, power = 90%; if $z_{\beta} = 1.64$, power = 0.95

Stata sampsi Command for Sample Size							
sampsi 100 110, sd(1	8.03	38) p(.8)					
alpha	=	0.0500 (two-sided)					
power	=	0.8000					
m1	=	100					
m2	=	110					
sd1	=	18.038					
sd2	=	18.038					
n2/n1	=	1.00					
Estimated rec	quire	ed sample sizes:					
n1	=	52					
n2	=	52					

Sample Size and Power

- · Sample size and power mirror images of one another
- As previously noted, when estimating a sample size, specify parameters, alpha, and beta and identify number needed per group
- Power Analysis: specify parameters, alpha and sample size and identify power to detect a difference
- If we calculate sample size with beta=0.8 and determine 100 patients are needed per group, except for rounding, when we calculate power given 100 patients per group will see it equals 0.8

Power Equation, Continuous Variables

$$z_{\beta} = \sqrt{\frac{N \Delta^2}{2 s d^2}} - z_{\alpha}$$

- + Equation yields z_β
- Power identified from z table
 - In stata: normal(z_{β})
- Assumes common N and common SD for each group

Power Equation, Continuous Variables

$$z_{\beta} = \sqrt{\frac{N \Delta^2}{2 \text{ sd}^2}} - z_{\alpha} = z_{\text{cl=0}} - z_{\alpha}$$

where $z_{\mbox{\tiny cl=0}}$ represents z-score that yields a CI for which one of CL = 0

- If know one of 90% CL equals 0 and want 95% confidence, know we have 38% power normal(1.645-1.96) = -0.376
- Works approximately for other types of contrasts as well – e.g., power for odds ratios

 If one of the 90% CL equals 1 and want 95% confidence, know we have ≈ 38% power

Stata sam	psi	Command for Power				
sampsi 100 110, sd(1	8.03	38) n(52)				
alpha	=	0.0500 (two-sided)				
m1	=	100				
m2	=	110				
sd1	=	18.038				
sd2	=	18.038				
n1	=	52				
n2	=	52				
n2/n1	=	1.00				
Estimated po	Estimated power:					
power	=	0.8070				

Incomplete Data (Drop Out)

- Derived sample size estimates are appropriate if we always have complete data
- If anticipate 10% with incomplete data, will want to divide sample size estimates by 0.9 to obtain "nominal" sample size from which "effective" sample size is derived

