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Goal of Clinical Sample Size Calculation

• Suppose we’ve estimated sample size for a change in 
odds of occurrence of a clinical outcome using α = 0.05 
and power = 0.8

• What are we expecting?
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Goal of Clinical Sample Size Calculation (2)

• Expectation: Among repeated experiments, ORs’ 95% CI 
exclude 1 from above in 80% of experiments and either 
include 1 or exclude 1 from below in 20% of experiments

Goal of Cost-Effectiveness Sample Size Calculation

• Suppose we’ve estimated sample size for assessing 
cost-effectiveness using α = 0.05 and power = 0.8

• What are we expecting?

Cost Effectiveness Ratio

• Expectation: Among repeated experiments, ICERs’ 95% 
CI exclude WTP/W from below in 80% of experiments 
and either include W or exclude W from above in 20%
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Net Monetary Benefit

• Expectation: Among repeated experiments, NMBs’ 95% 
CI exclude 0 from above in 80% of experiments and 
either include 0 or exclude 0 from below in 20%

Goal of Sample Size and Power Calculation

• More generally, sample size and power calculations 
allow us to conduct experiments with an expected 
likelihood that at conclusion of experiment we will be 
able to be confident in resulting comparison of costs and 
effects

– e.g., may hypothesize that point estimate for cost-
effectiveness ratio for therapy A will be 20,000 per 
QALY

– May want to design an experiment that provides an 
80% chance (i.e., power) of concluding with 95% 
confidence that therapy A is good value when we are 
willing to pay at most 75,000 per QALY

Sample Size / Power

• Sample size calculation

– Given a desired alpha (α) and power (1-β), proactively 
manages probability of saying a difference exists 
when none does

• Type 1 error; False positive; alpha; confidence

• Power Analysis

– Given a desired alpha and a known sample size, 
proactively manages probability of saying no 
difference exists when one does

• Type 2 error; False negative; (1-Beta); power

• “provides an 80% chance (power) of concluding with 
95% confidence (alpha) that therapy is good value”
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Other Cost-Effectiveness Sample Size Traditions

• Sample size approach described here comes out of 
frequentist statistical tradition

• Other approaches that have been discussed in cost-
effectiveness literature include:

– Bayesian (O’Hagan and Stevens)

– Value of information (Koerkamp et al.)

– Opportunity cost (Gafni et al.)

– Decision model (Willan and O’Brien)

Sample Size Formula, Common SDs

• Assuming equal SDs and sample sizes, sample size 
formula is:

where n = sample size/group; zα and zβ = z-statistics for 
α (e.g., 1.96) and β (e.g., 0.84) errors; sd = standard 
deviation for cost (c) and effect (q); W = maximum 
willingness to pay we wish to rule out; and ρ = 
correlation of difference in cost and effect; and (W∆Q-
∆C) = NMB

      
 

2 22
c q c q

2

2 z +z sd  + W sd - 2 W ρ sd  sd
n =

W Q - C

 

 

cess1i 200 .01 447.845 .01326715 -.71015 75000 .05 .8

Assumptions

Difference in costs: 200

Difference in effects: 0.01

Standard deviation, costs: 447.845

Standard deviation, effects: 0.01326715

Correlation, difference in costs and effects: -0.71015

Willingness to pay: 75000

Two-tailed alpha level: 0.05

One-tailed beta level: 0.8

*** SAMPLE SIZE PER GROUP *** 95
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Sample Size Supports Other α / β Pairs

• Yes, 95 participants per group support α=0.05  and 
power=0.8

• But what enters formula is sum of zα and zβ (zα + zβ)2

– E.g.,  for α=0.05  and 1-β=0.8, 2.8016 (1.96 + .8416)

• 95 participants per group supports any zα/zβ pair whose 
z-scores sum to 2.8016, e.g.,:

Alpha Zα Power zβ

0.01 2.5758 0.589 0.2258

0.03 2.1701 0.736 0.6315

0.05 1.9600 0.80 08416

0.075 1.7805 0.846 1.0211

0.10 1.6449 0.876 1.1567

Null Hypothesis, NMB

• Formula identifies a sample size that provides a 1-β% 
chance to have 1−α% confidence for rejection of null 
hypothesis that NMB (NMB = WQ − C) calculated by use 
of W equals 0

– If assumptions about C, Q, sdc, sdq, and ρ are correct 
and if α=0.05 and 1-β=0.8, then with a sample size of 
95 per group:

• In approximately 800 of 1000 repeated 
experiments, lower limit of 95% confidence interval 
for difference in NMB will be greater than 0 
(therapy represents good value)

• In approximately 200, 95% confidence intervals will 
either include 0 or have an upper limit less than     
0 (no difference in or bad value)

Null Hypothesis, CER and Acceptability

• Formula also identifies a sample size that provides a 1-
β% chance to have 1−α% confidence for rejection of null 
hypothesis that cost-effectiveness ratio equals W (i.e., 
that 1−α% confidence interval for cost-effectiveness ratio 
excludes W)

• Or equivalently, identifies a sample size that provides a 
1-β% chance for rejection of null hypothesis that at W, 
fraction of joint distribution of difference in cost and effect 
that is acceptable is greater than α/2% and less than 1− 
(α/2)%
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Similarities With Clinical Sample Size Formulas

Error

Rate                            NMB Variance

Difference2

  
 

 

22 2
c q c q

2

2 2
q

2

2    (z +z )   sd  + W sd - 2 W ρ sd  sd
n =

W Q - C

2    (z +z )                        sd                       
n =

Q

 

 

 



• Variance of NMB more complicated than variance for 
usual continuous clinical differences

– Includes ρ, correlation of difference between cost and 
effect

– Includes W, decision threshold we are trying to rule 
out

Differences in Formulas

2 2
NMB c q c qVar  = sd  + (  sd )  - (2  sd  W ρ sdW )

• Correlation of difference in cost and effect indicates how 
changes in difference in cost are related to changes in 
difference in effect

– Negative (win/win) correlation: larger differences in 
effects associated with smaller differences in costs

• e.g., asthma care: reductions in exacerbations 
leads to lower costs

– Positive (win/lose) correlation: larger differences in 
effects are associated with larger differences in costs

• e.g., life-saving care: increases in stroke survival 
may lead to higher care costs

• If W is positive, all else equal, larger positive correlations 
require fewer participants; larger negative correlations 
require more participants

 2 2
c q c qsd  + (W sd )  - (2 W  sd  sd )
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Effect of Correlation on Sample Size

• If ∆C=200, ∆Q=.01; SDc= 447.845; SDq=.01326715; 
W=75,000; α=0.05; and 1-β=0.8:

Correlation Sample Size

-0.50 85

-0.25 74

0.00 62

0.25 51

0.50 39

0.75 28

Willingness to Pay and Identification of an
Appropriate Outcome Measure

• Sample size calculations require stipulation of W for a 
unit of outcome

• In many medical specialties, researchers use disease 
specific outcomes

• Can calculate a cost-effectiveness ratio for any outcome 
(e.g., cost/case detected; cost/abstinence day)

• But to be informative, outcome must be one for which 
we have recognized benchmarks of cost-effectiveness

– Argues against use of too disease-specific an 
outcome for economic assessment

W and Point Estimate

• When W is greater than expected point estimate, 
resulting sample size and power allows us to be 
confident that MORE EFFECTIVE THERAPY is good 
value

– Because confidence statements from these trials will 
be that point estimate for more effective therapy is 
less than willingness to pay

• When W is less than expected point estimate, resulting 
sample size and power allows us to be confident that 
MORE EFFECTIVE THERAPY is bad value

– Because confidence statements from these trials will 
be that point estimate is greater than willingness to 
pay
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Effect of Willingness to Pay (W)

• As already shown, direction of effect of correlation of 
difference is known

– all else equal, more positive correlation, smaller 
sample size

• For W, no such consistent relationship exists

• Sample size approaches infinity and power approaches 
α/2 as expected point estimate approaches W

– e.g., if W = 75,000, expected ∆C=15,000, and 
expected ∆Q=0.2, NMB (W∆Q-C) in denominator of 
sample size equation approaches 0

• Sample size reaches a minimum at what I refer to as 
widest definable interval which is uniquely defined for an 
experiment based on ∆C, SEc, ∆Q. Seq. and ρ

• Common expectation: all else equal, larger W yields 
smaller sample size

* ΔC=25; ΔQ=-0.01; sdc=2500; sdq=.03; ρ=0.0; α=.05;      
1-β=.8

Sample Size Per Group

W Exp 1 *

20,000 2050

30,000 1050

50,000 485

75,000 296

100,000 228

500,000 144

“Expected” Sample Size Table, W

• Experiments can exist in which sample size increases as 
W increases

* ΔC=-5000; ΔQ=0.01; sdc=5000; sdq=.15; ρ=-0.07;     
α=.05;  1-β=.8

Sample Size Per Group

W Exp 1 Exp 2*

20,000 2050 16

30,000 1050 21

50,000 485 28

75,000 296 45

100,000 228 76

500,000 144 896

Sample Size Can Increase With Larger W
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• Experiments can exist in which sample sizes decrease 
and then increase as W increases

* ΔC=-120; ΔQ=0.015; sdc=1000; sdq=.05; ρ=0.0;     
α=.05;  1-β=.8

Sample Size Per Group

W Exp 1 Exp 2 Exp 3*

20,000 2050 16 178

30,000 1050 21 158

50,000 485 28 151

75,000 296 45 153

100,000 228 76 156

500,000 144 896 170

Sample Size Not Necessarily Monotonic With W

Experiment 1 Rationale (see samplesizelogic.pdf)

Experiment 2 Rationale (see samplesizelogic.pdf)
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Experiment 3

Experiment 3 Rationale (see samplesizelogic.pdf)

Effect of SDq VS SDc on Sample Size

• All else equal, increases in SDq or SDc lead to increases 
in sample size

• Commonly thought that sample size for cost-
effectiveness driven more by SDc than by SDq

– If not, why do we commonly need a larger sample for 
cost-effectiveness outcome than for clinical outcome?

• However, if willingness to pay is substantially greater 
than SDc, percentage changes in SDq can have a 
substantially greater effect on sample size than will 
equivalent percentage changes in SDc
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Sample Size, SDq, and SDc

• Sample size formula is symmetric for SDs of cost and 
effect except for:

in numerator of equation

• Square of SDq is weighted by square of W (e.g., 
75,0002); square of SDc is unweighted

– So long as W SDq > SDc, SDq will have a greater 
impact on sample size in face of equivalent 
percentage changes in SDq and SDc

– E.g., if W=75,000 and SDq=0.2; percentage changes 
in SDq will have larger effect so long as SDc<15000 
(75,000*0.2)

2 2
c qsd  + (W sd )

Sample Size Tables, Relatively Large SDc

• In this case with relatively larger SDc‘s, equivalent 
percentage changes in SDc and SDq make no difference 
to required sample size for experiment

ΔC=250; ΔQ=.0.05; unless otherwise specified, sdc=    
15,000 and sdq=.2; ρ=-.1; W=75,000; α=.05; β=1-.8

SDc N/Group SDq N/Group

7500 390 0.1 390

15,000 635 0.2 635

22,500 1024 0.3 1024

30,000 1517 0.4 1517

45,000 3057 0.6 3057

• In this case with relatively smaller SDc’s, equivalent 
percentage changes in SDc and SDq yield substantially 
larger shifts in sample size given increases in SDq

ΔC=250; ΔQ=0.05; unless otherwise specified, sdc=     
5000 and sdq=.2; ρ=-.1; w=75,000; α=.05; 1-β=.8

SDc N/Group SDq N/Group

2500 306 0.1 114

5000 340 0.2 340

7500 389 0.3 710

10,000 455 0.4 1224

15,000 634 0.6 2685

Sample Size Tables, Relatively Small SDc
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Economic Vs Clinical Sample Sizes

• Sample size required to answer economic questions 
typically considered larger than sample size required to 
answer clinical questions

– But not necessarily in all cases

• ΔC and ΔQ are a joint outcome just as differences in 
nonfatal CVD events and all cause mortality are often 
combined into a joint outcome

• In same way that we can have more power for joint 
cardiovascular outcome than either individual outcome 
alone, we can have more power for cost-effectiveness 
than we do for costs or effects alone

What Can We Conclude About ∆C, ∆Q, Value?

What Can We Conclude?

• Difference in cost not significant

– Because too large a fraction (>2.5%) of replicates 
above X axis ($0) and too small a fraction (<97.5%) 
below X axis

• Difference in effects not significant

– Because too large a fraction (>2.5%) of replicates to 
left of Y axis (0 QALYs) and too small a fraction 
(<97.5%) to right of Y axis 

• Can be 95% (100%) confident of value at specified WTP

– Because all replicates fall below and to right of 
willingness to pay line

• There are some values of WTP where we can’t be 95% 
confident (e.g., $0 and $∞)
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Dropout and Sample Size

• Sample size estimates from formula appropriate if we 
expect no dropout from trial

• If we instead anticipate 10% dropout, divide sample size 
estimates by 0.9

Power Formula, Common SDs

• Assuming equal sds and sample sizes, power formula is:

• Result is zβ, not power

• To estimate power, use normal distribution table to 
identify fraction of tail that is to left of zβ

– Stata (V11+) code:  power = normal(zβ)

– E.g., -1.96 = 2.5% power; -0.84 = 20% power; 0 = 
50% power; .84 = 80% power; 1.28 = 90%

  
2

22
c q q c

n * (W Q - C)
z  =  - z

2 sd  + W sd - 2 W  sd  sd
 

 



cepow1i 200 .01 447.845 .01326715 -.71015 75000 .05 95

Assumptions

Difference in costs: 200

Difference in effects: 0.01

Standard deviation, costs: 447.845

Standard deviation, effects: 0.01326715

Correlation, difference in costs and effects: -0.71015

Willingness to pay: 75000

Two-tailed alpha level: 0.05

Sample size per group: 95

*** POWER TO DETECT DIFFERENCE *** 0.802
z beta: 0.8471

http://www.uphs.upenn.edu/dgimhsr/eeinct_ssandp.htm
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Power Table for Varying Sample Sizes

Sample Size
Power for
W = 75,000

50 0.53

75 0.703

95 0.802

150 0.941

200 0.983

ΔC=200; ΔQ=0.01; sdc=447.845; sdq=.01326715; 
ρ=━.71015; w=75,000; and α=.05

Patterns of Power: SD, Z, ρ, ΔC (Q)
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Power Doesn’t Go to 0, No Matter Value of ∆C

• Even when ∆C = W∆Q (i.e., NMB=0), we on average  
will still accidentally conclude the therapy is good     
value 2.5% (α/2) of time
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6 Patterns of Power for W>0
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• Provided examples where sample size increased, 
decreased, or was v-shaped, but more patterns exist
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Two Underlying Patterns of Power for W

• When we plot power patterns for -∞ < W < ∞, there are 2 
classes of patterns differentiated by whether value of W 
where power reaches a maximum is greater than or less 
than value of W where power reaches a minimum

Truncation at 0 Creates 6 Patterns

• Can see 6 patterns for values of W>0 because W can equal 
0 at any point on each of 2 curves

• Pattern we observe depends on where 0 W falls
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Dropout and Power

• If we anticipate 10% dropout, we will want to use 
“effective sample size” (e.g., 0.9 * 95) when we make our 
power calculations 

Where to Obtain Necessary Data? 

• When therapies are already in use: Expected differences 
in outcomes and standard deviations can be derived 
from feasibility studies or from records of patients

– Potential sources

• Medical charts of administrative data sets

• Patient logs of their health care resource use

• Asking patients and experts about kinds of care 
received by those with condition under study

– Simple correlation between observed costs and 
effects may be an adequate proxy for measure of 
correlation used for estimating  sample size

Obtaining Data for Novel Therapies

• For novel therapies, information about magnitude of 
incremental costs and outcomes may not be available

– May need to be generated by assumption

– Data on standard deviations for those who receive 
usual care/placebo may be obtained from feasibility 
studies or patient records

• May want to assume sd from usual care (or a 
multiplier) will apply to new therapy, etc.
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Summary

• Goal of sample size and power calculation for cost-
effectiveness analysis is to identify likelihood that an 
experiment will allow us to be confident that a therapy is 
good or bad value when we adopt a particular 
willingness to pay

• Sample size and power depend on difference in cost and 
effect, SD of cost and effect, correlation of difference, 
our willingness to pay, and our target confidence level

Summary (2)

• When we estimate sample size or power, we often do so 
for varying levels of W

– Sample size is undefined / power reaches a minimum 
when W equals point estimate for cost-effectiveness 
ratio (NMB=0)

• When W is substantially greater than SD for cost, 
changes in SD for effect generally have greater impact 
on sample size than do changes in SD for cost

• So long as W>0, positive correlations decrease sample 
size / increase power

Glick HA. Sample size and power for cost-
effectiveness analysis (part 1). Pharmacoeconomics. 
2011;29;189-98.

Glick HA. Sample size and power for cost-
effectiveness analysis (part 2). The effect of maximum 
willingness to pay. Pharmacoeconomics. 2011;29:287-
96.
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Sample Size Formula, SDs Differ

• When SDs differ, formula becomes:

where n = n/group; tα/2 and tβ = t-statistics for α and β 
errors; sd = standard deviation for cost (c) and effect (q); W 
= maximum willingness to pay one wishes to rule out; and ρ 
= correlation of difference in cost and effect

          
 

0.5 0.52 2 2 2 2 2 2 2 2 2
c0 c1 q0 q1 c0 c1 q0 q1

2

(z +z )  sd  + sd  + W  sd  + sd - 2 W ρ sd  + sd  sd  + sd
n =

W Q - C

 

 

Sampling Uncertainty Primer

Unidimensionality vs 2 Dimensionality

• Clinical outcomes typically are unidimentional and 
sampling uncertainty around these outcomes make 
sense on real number line

• Cost-effectiveness ratios are 2 dimensional and 
sampling uncertainty around these ratios can have 
unexpected properties on real number line

– E.g., CI for ICER can include ∞ and -∞ but -∞ needn’t 
represent lower bound of interval and ∞ needn’t 
represent upper bound of interval

• Best to view results on 2D cost-effectiveness plane
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Cost-Effectiveness Plane and Value

• X and Y 
axes

• W line
• Quadrants 

that are 
acceptable 
for therapy A 
and B

• -∞ and +∞

Real Number Ring

• If we want to move from CE plane to something like a 
real number line, overcome many problems if we map 
results onto real number ring

Real Number Ring Examples

95% CI

75% CI

92% CI
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Results of Experiment on 2 Dimensional CE Plane

• Bootstrap of patient level data (left)

• Second order Monte Carlo (decision analysis with 
variables represented by distributions) (left)

• Bivariate normal curves (Δc, SEc, Δq, SEq, ρ) (right)

Plane Depicts Results of Effectiveness Analysis
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Plane Depicts Results of Cost Analysis
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In Which Experiments Can We Be Confident of Value?

Red: confident of bad value
All points above W line

Black, not confident of value
Too many point on both sides of W line

Blue, confident of good value
All points below W line and above X axis

Cyan, confident of dominance
All points in lower right quadrant

95% CI for ICER?



22

Upper left:  CI for ∆C

Upper right:  CI for NMB

Lower right: 95% confidence ellipse around 
point on C/E plane defined by ∆C and ∆q 
(CE for point, not CI for ICER)

Lower left: 95% CI for ICER

95% CI

Confidence Interval for ICER

• Because denominator of ratio can equal 0, there is no 
SE for ICER

• Thus CAN’T calculate ICER +/- 1.96 * SEICER

• CI for ICER defined as 0, 1, or 2 lines through origin of 
CE plane that exclude 2.5% of joint distribution of 
difference in cost and effect

• Fieller’s theorem provides parametric equation for 
calculating these CI:

2 2 2 0.52 2 2 2 2 2
α/2 ΔE α/2 ΔE α/2 ΔE α/2ΔC ΔC ΔC

2 2 2
α/2 ΔE

(ΔCΔE-t ρs s )±([ΔCΔE-t ρs s ] -[ΔE -t s ][ΔC -t s ])

 ΔE -t s

Net Monetary Benefit (NMB)

• NMB represents a transformation of ICER decision 
criterion (W > ∆C/∆Q becomes W∆Q - ∆C > 0) which is 
linear and has a defined SE

SENMB = (SEc 2 + (W SEq 2) – 2 W ρ SEc SEq) 0.5

• As with other differences, NMB is significant if it’s CI 
excludes 0

• 95% CINMB = NMB +/- 1.96 * SENMB

NMB +/- 1.96 (SEc 2 + (W SEq 2) – 2 W ρ SEc SEq) 0.5

• If we set CI = 0, we can derive NMB CI equation from 
Fieller’s theorem equation


