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Confidence About Value for the Cost

• Common goal of economic analysis: identify when we 
can be confident that a therapy is good value compared 
to another 

• Threat to confidence: economic result observed in 
experiment may not reflect result in the population

– Single sample drawn from population 

• Referred to as sampling (or stochastic) uncertainty

• Methods for estimating sampling uncertainty for 
economic outcomes have much in common with 
methods used for clinical findings

Outline

• Familiarize you with methods used in literature to identify 
when we can and cannot be confident about a therapy’s 
value

– Cost-effectiveness plane

– Acceptability curves

– CI for ICER

– CI for NMB

• Goal:  demonstrate quantification and interpretation of 
sampling uncertainty using these methods

– Including where people have gone wrong

• Don’t focus on technical aspects of estimation

– Stata programs available at:

www.uphs.upenn.edu/dgimhsr
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Cost-Effectiveness Plane

Joint Distribution of Cost and Effect

• Bootstrap of patient level data (left)

• Second order Monte Carlo (decision analysis with 
variables represented by distributions) (left)

• Bivariate normal curves (Δc, SEc, Δq, SEq, ρ) (right)

Joint Distribution of Cost and Effect (2)

• Mean cost difference, $4600, SE, 1803

• Mean QALY difference, 0.2090, SE, 0.2430

• Correlation of difference, -0.045

• ICER Point estimate = 22,010 (4600 / 0.2090)
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Information from Plane

• Cost-effectiveness plane provides information about 
point estimates, confidence intervals and p-values for:

– Difference in effect

– Difference in cost

– Cost-effectiveness analysis

In Which Experiment(s) is ΔQ Significant?

Red and blue

(because all of their densities fall on        

one side of 0 on Y-axis)

Black triangles not significantly different 
(because too large a density falls on each 

side of 0 on Y-axis)
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In Which Experiment(s) is ΔC Significant?

Overview1.tc

Red and blue

(because all of their densities fall on        

one side of 0 on X-axis)

Black triangles not significantly different 
(because too large a density falls on each 

side of 0 on X-axis)

Value and the Cost-Effectiveness Plane
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In Which Experiments Can We Be Confident of Value?

Red, blue, and cyan

(because all of their densities fall on        

one side of WTP)

Black triangles not confident because large 
fractions  of density fall on both sides of 

WTP

For red, blue and cyan,

what confidence statements

can we make?
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Confidence Statements for Red, Blue, and Cyan?

For cyan, confident of dominance

(because all of density falls below X-axis 
and to right of Y-axis)

For blue, confident of good value

(because all of density falls above x axis, to 
right of y axis, and below WTP line

For red, confident of bad value

(because all of density falls above x axis, to 
right of y axis, and above WTP line)

What Can We Conclude About ∆C, ∆Q, Value?
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Can’t be confident about difference in cost

(because too large a density above and  
below X-axis)

Can’t be confident about difference in effect

(because too large a density to the left     
and right of Y-axis)

Can be confident of cost-effectiveness

(because all density below WTP line)

What if there is No Recognized Single WTP?
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Provide a statistic that allows decision 
makers to determine  if – based on their 

own WTP – they can be confident of value
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Confidence Intervals

• Graphs above provide examples of 0 (for differences in 
means, including NMB), 1 (for OR and RR), or 
willingness to pay (W) (for CI for CER) falling either well 
inside or fully outside distribution of results

• Don’t typically require that results be fully outside 
distribution to conclude they differ from 0, 1, or W

– Parametrically never happens

• Usual strategy:  Identify a tolerance – e.g., 2.5% for 95% 
confidence – for the maximum fraction of results that can 
fall on one side of 0, 1, or W

• Conclude with 95% confidence that result excludes 0, 1, 
or W if 0, 1, or W fall outside 95% CI

95% CI, ΔQ
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Can be 95% confident of a difference for red 
and blue (because 0 on X-axis does not 

fall within the 95% CI)

Can’t be 95% confident of difference for 
black triangles (because 0 on X-axis falls 

within 95% CI)
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95% CI, ΔC

Can be 95% confident of a difference for red 
and blue (because 0 on Y-axis does not 

fall within the 95% CI)

Can’t be 95% confident of difference for 
black triangles (because 0 on Y-axis falls 

within 95% CI)

95% CI for ICER?
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Upper left:  CI for ∆C

Upper right:  CI for NMB

Lower right: 95% confidence ellipse around 
the point on the C/E plane defined by ∆C 
and ∆q (CE for point, not CI for ICER)

Lower left: 95% CI for the ICER

95% CI

For Which Values of W Can We Be Confident?

Cost-Effectiveness Plane (Figure 14)

Cochrane T, Randomized controlled trial of the cost-effectiveness of water-based 
therapy for limb osteoarthritis.Health Technology Assessment. 2005; 9. Table 25.
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Cost-Effectiveness Plane (Figure 14)

Cochrane T, Randomized controlled trial of the cost-effectiveness of water-based 
therapy for limb osteoarthritis.Health Technology Assessment. 2005; 9. Table 25.

Reported cost difference: 134.1, 95% CI 127.2 to 141
Reported EQ-5Di difference: 0.013, 95% CI, 0.0117 to 0.0138

Probable mistake: mistook bootstrap SE for bootstrap SD

Cost-Effectiveness Plane

Brown ST, et al. Cost-effectiveness of insulin glargine versus sitagliptin in insulin-
naïve patients w/ T2DM. Clin Therapuetics.2014; 36: 1576-87

Cost-Effectiveness Plane

Brown ST, et al. Cost-effectiveness of insulin glargine versus sitagliptin in insulin-
naïve patients w/ T2DM. Clin Therapuetics.2014; 36: 1576-87

Reported cost difference: -1418, 95% CI -1540 to -1295
Reported QALY difference: 0.074, 95% CI, 0.066 to 0.082

Probable mistake: mistook bootstrap SE for bootstrap SD
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Sampling Uncertainty Issues

• # of methods available

– Acceptability curve

– CI for ICER

– CI for NMB

• What is threshold, maximum willingness to pay?

– Differs across jurisdictions

– Differs within jurisdictions

• Should we be 95% confident?

– A lot of economists claim not

First Example:

(Nonparametrically) all replicates on one 
side of Y-axis and naïve ordering works

(easiest case)

Experiment 1

• Therapy A vs Therapy B (A – B)

• Δcost = 1000  (SE: 324.9, p=0.002)

• ΔQALYs = 0.01  (SE: 0.001925, p=0.000)

• A is significantly more costly and significantly more 
effective

– CER = 1000 / 0.01 = 100,000 / QALY gained

• 250 participants in each arm of the trial

• Correlation between difference in cost and effect is -
0.71015
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Distribution of Results
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Experiment 1

Acceptability Curve

“Counting” Method 1: Acceptability Curve

• Previously said usually identify a tolerance – e.g., 2.5% 
for 95% confidence – for the maximum fraction of results 
that can fall on one side of 0, 1, or W

• Can determine fraction that falls on one side by counting 
/   estimating density of results distribution falling on 
each side of W

• Referred to as acceptability curve
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Parametric or Nonparametric Construction

• Can be constructed nonparametrically or parametrically

• Nonparametric construction usually derived by counting 
bootstrap/second order Monte Carlo replicates

– Does not assume bivariate normality

– Particularly for acceptability curve and CI for CER, 
calculating fraction falling on each side of exact same 
lines through origin

• Parametric construction generally based on 
(rearrangement of) Fieller’s theorem formula for CI for 
CER (i.e., transformation of same formula)

– Assumes difference in costs and effects distributed 
bivariate normal

Acceptability Curve

• Acceptability criterion defined on cost-effectiveness 
plane as a line passing through origin with slope equal to 
WTP

• Proportion of distribution of difference in cost and effect 
below and to right of line is "acceptable" (i.e., has 
positive NMB)

– Proportion acceptable for one therapy = proportion 
unacceptable for alternative therapy

• Proportion above and to left of line is "unacceptable“

– Proportion unacceptable for one therapy = proportion 
acceptable for alternative therapy
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Counting Methods

• When all replicates on one side of Y-axis:

– Calculate ratios and count ratios < WTP

– Calculate NMB using WTP; count values of NMB > 0

– Calculate MB for each Rx using WTP; count 
replicates for which Rx A’s MB greater than Rx B’s

% Acceptable, W = 28,200

Green:  (W * ΔQ) - ΔC > 0
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Experiment 1

28,200: 100, .025

% Acceptable, W = 100,000
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•
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% Acceptable, W = 245,200

0.000 0.004 0.008 0.012 0.016 0.020
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245,200: 3900, .975

•

Constructing the Acceptability Curve
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179,600: 3600, .90

Experiment 1

370,000: 3989, .996

127,700: 2800, .70

76,800: 1200, .30

28,200: 100, .025

49,100: 400, .10

10,000: 16, .004

Acceptability Curve

0 100000 200000 300000 400000

Willingness to Pay

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

28,200 245,200

Experiment 1

0.025

0.975



17

W What is often said

28,200 “97.5% chance Rx A not good value” (Rx B 
good value)

76,800 “70% chance Rx A not good value”

100,000 “50% chance either therapy good value”

127,700 “70% chance Rx A good value” (Rx B not 
good value

245,200 “97.5% chance Rx A good value”

“Common” Conclusions from Acceptability Curves

• Common to adopt 1-tailed interpretation of acceptability 
curve

• Ignores fact that 50% – not 0% – represents no 
information

2-tailed Confidence Statements

• Two-tailed confidence statements

– (For heights > 0.5)  Confidence level:

(2 * Height) - 1

• e.g., if height of curve is 0.975 for W = 50,000,     
(2 * .975) -1 = “95% confident that therapy is 
acceptable / cost-effective”

– (For heights < 0.5) Confidence level:

1-(2*Height)

• e.g., if height of curve is 0.025 for W = 50,000, 
“95% confident alternative therapy is acceptable / 
cost-effective”

Acceptability Curve Additional Information (1)

• Counting the 
points above and 
below 0 on the 
X-axis tells us 
proportion 
acceptable when 
WTP=0

• What else have 
we concluded 
after counting 
points above and 
below 0 on the 
X-axis (slide 
10)?
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Additional Information: 1-Tailed P-Value, ΔC

• a: curve height at 
0 on x axis = 1-
tailed p, ΔC (if 
curve height <
0.5)

• 1-curve height at 
0 = 1-tailed p, 
ΔC (if curve 
height > 0.5)

Additional Information (2)

• Counting points 
to right and left of 
0 on Y-axis tells 
us proportion 
acceptable when 
WTP=∞

• What else have 
we concluded 
after counting 
points to right 
and left of 0 on 
the Y-axis (slide 
8)?

Additional Information: 1-Tailed P-Value, ΔQ

• b: curve height 
as WTP 
approaches ∞ = 
1-tailed p, ΔQ (if 
curve height <
0.5)

• 1-curve height as 
WTP 
approaches ∞ = 
1-tailed p, ΔQ (if 
curve height >
0.5)
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Additional Information (3)

• Parametrically, line 
through point 
estimate of ICER 
defines 50% 
acceptable

• Nonparametrically, 
line through point 
estimate of ICER 
approximately 
defines 50% 
acceptable

Additional Information, Point Estimate of ICER

• c: for parametric 
curve, value of W 
where curve 
height = 0.5 
represents point 
estimate of ICER

• For nonparametric 
curve, value of W 
where curve 
height = 0.5 
approximates 
point estimate of 
ICER

Additional Information (4)

• Values of W for 
lines through the 
origin that cut-off 
25% (70,800) and 
75% (136,700) of 
distribution 
represent 
confidence limits 
for 50% CI
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Additional Information, CL for ICER

• d: values of W 
where curve 
heights = 0.25 
(70,800) and 
0.75 (136,700) 
represent 50% 
confidence limits

• More generally, 
values of W 
where curve 
heights = α/2 and 
1-α/2 represent 
α% confidence 
limits

Additional Information in Acceptability Curve

Common to Believe Curves Always Look Like This
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Observable Acceptability Curves for WTP > 0

0 20 40 60 80 100
(Thousands)

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 A

cc
e

p
ta

b
le

0. 00 0. 50 1. 00 1. 50 2. 00 2. 50
(Millions)

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 A

cc
e

p
ta

b
le

0 60 120 180 240 300
(Thousands)

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 A

cc
e

p
ta

b
le

-0. 60 -0. 10 0. 40 0. 90 1. 40 1. 90
(Millions)

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 A

cc
e

p
ta

b
le

Two Basic Acceptability Curve Patterns

-1 .0 0 -0 .4 0 0 .2 0 0 .8 0 1 .4 0 2 .0 0
(M i l l i o n s )

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n 

A
cc

ep
ta

bl
e

-4 -2 0 2 4 6
(M i l l i o n s )

Willingness to Pay
0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n 

A
cc

ep
ta

bl
e

Observed Shape Depends on Location of 0 Line



22

Observed Shape Depends on Location of 0 Line

Confidence Interval for Incremental Cost-
Effectiveness Ratio

“Counting” Method 2: CI for ICER

• Can also determine fraction of results that fall on one 
side of W by identifying slopes of 0, 1, or 2 lines through 
the origin that exclude α/2 of distribution

– Identification by either counting/estimating distribution 
of results falling on each side of lines through origin

• Slopes of lines that have 2.5% of distribution on 1 
side and 97.5% on other define 95% CL for CER

• Slopes of same lines define values of W for which 
acceptability curve has heights of 2.5% and 97.5%

• Referred to as confidence interval for cost-effectiveness 
ratio
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Construction of CI for Difference, OR, or RR

• Common algorithm

– Develop distribution of difference (e.g., NMB), OR, or 
RR

• e.g, create empiric distribution from bootstrap or 
assume a distribution such as normal or log normal

– Order distribution from smallest to largest

– Construct 95% CI by identifying 2.5th and 97.5th

percentiles of rank-ordered distribution

• Either by counting (nonparametric) or estimating 
density (parametric)

– Values of outcome that bound these percentiles 
represent the 95% confidence limits

• Works well for differences, OR, or RR

Construction of CI for ICER

• To use same algorithm for construction of CI for CER:

– Develop joint distribution of difference in C and Q and 
calculate ratios

– Order ratios from smallest to largest (referred to as 
“naïve ordering”)

– For 95% CI, identify 2.5th and 97.5th percentiles of 
rank-ordered ratios

– Values of ratio that bound 2.5th and 97.5th percentiles 
represent 95% confidence limits

All of Density on One Side of Y-Axis

• Algorithm works when all density/replicates are on one 
side of Y-axis

• On CE plane, interval stretches counter-clockwise from 
lower (clockwise) limit to upper (counter-clockwise) limit
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Order from -∞ to 0

Continue from 0 to ∞

Makes Sense if Entire Density on One Side of X-Axis
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Lower 95% Confidence Limit (Same as Slide 44)

Green:  (W * ΔQ) - ΔC > 0
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•

Upper 95% Confidence Limit (Same as Slide 46)

CI for ICER for Experiment 1

0.000 0.005 0.010 0.015 0.020

Difference in QALYs

-100

100

300

500

700

900

1100

1300

1500

1700

1900

2100

D
iff

er
en

ce
 in

 C
os

t

LL:  28,200

UL:  245,200

Experiment 1

IncludedExcluded

Excluded

ΔC = 1000; SEC = 325; ΔQ = 0.01; SEQ = 0.001925; ρ = -.71; DOF = 498
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Parametric CI for ICER for Experiment 1

Included

CI for ICER Not Tangent to 95% Ellipse

95% CL Tangencies With 85.5% Confidence Ellipse

lower limit:  364.96, .0129; upper limit: 1570.38, .0064
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Confidences Statements for CI for CER

• Not confident of value if:

– LL < W < UL

• Confident of value if:

– LL < UL < W (confident of good value)

– W < LL < UL (confident of bad value)

Confidences Statements for Current Experiment

• Can be confident of value when W not included in 
confidence interval

• When lower limit is a smaller number than upper limit

– Interval ranges between lower and upper limit

28,200 to 245,200

– Confident of value if WTP is either smaller than lower 
limit or greater than upper limit

• Confident of bad value if WTP < 28,200

– Because at least 97.5% of samples have ratios 
greater than 28,200

• Confident of good value if WTP > 245,200

– Because at least 97.5% of samples have   
ratios less than 245,200

W What is often said

<28,200 “95% confident Rx A not good value” (Rx B 
good value)

76,800 Can’t be 95% confident value of Rxs differs

100,000 Can’t be 95% confident value of Rxs differs

127,700 Can’t be 95% confident value of Rxs differs

>245,200 “95% confident Rx A good value (Rx B not 
good value)

“Common” Conclusions, CI for CER

• Usually employ 2-tailed interpretation of CI for CER
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Confidence Interval for NMB

“Counting” Method 3: CI for NMB

• Finally, can determine if W falls inside or outside 
distribution by constructing distribution of NMB for 
specified W and identifying whether 0 falls within interval

• As for any difference, construct interval by ordering 
distribution of NMB and identifying values of NMB that 
define the 2.5th and 97.5th percentiles

• In contrast with acceptability curve and CI for CER, not 
(typically) defining lines through the origin of CE plane

– But lines through origin have same meaning as for 
acceptability curves and CI for CER

NMB Recap

NMB = (W*ΔQ ) – ΔC

• For a WTP of 50,000, NMB for experiment 1:

(50,000 * .01) -1000 = -500

• Study result a difference in means of net benefits, not a 
ratio of means, and is always defined (i.e., no odd 
statistical properties like ratio) and continuous

• Unlike cost-effectiveness ratio, standard error of net 
benefits is always defined

• Given not all decision making bodies have agreed upon 
maximum willingness to pay, routinely estimate net 
benefit over range of policy relevant values of willingness 
to pay
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Net Benefit Graphically

• For a given W, can calculate value of NMB for every point 
on CE plane

• Formula: NMB = W ΔQ – ΔC

• If W= 50,000, the following points all fall on same line 
(slope 50,000, intercept 500) and have same value of NMB

• Value of NMB for lines with 50,000 slope = -intercept

– e.g., -(-500) = 500

ΔC ΔQ NMB

-500 0 (50,000 * 0) – (-500) = 500

49,500 1 (50,000 * 1) – (49,500) = 500

99,500 2 (50,000 * 2) – (99,500) = 500

149,500 3 (50,000 * 3) – (149,500) = 500

Net Benefit Graphically (2)

• Defined on cost effectiveness plane using a family of 
lines

• Each line represents a single value of NMB and equals 
−intercept (because when ΔQ=0, WΔQ drops out of 
equation

• Slope of all lines equal to W

• 95% CI for NMB defined by identifying 2 NMB lines that 
each omit 2.5% of distribution

Net Benefit Graphically (3)

• If W= 100,000, the same 4 points all fall on different NMB 
lines (slope 100,000, varying intercepts) and have different 
values of NMB

• Value of NMB for lines with 100,000 slope = -intercept

ΔC ΔQ NMB

-500 0 (100,000 * 0) – (-500) = 500

49,500 1 (100,000 * 1) – (49,500) = 50,500

99,500 2 (100,000 * 2) – (99,500) = 100,500

149,500 3 (100,000 * 3) – (149,500) = 150,500
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Constructing CI for NMB, WTP=28.2K
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• We’ve seen line defining upper CI before!

Constructing CI for NMB, WTP=100K
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• We’ve seen line defining lower CI before!
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NMB Graph with CI
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Additional Information About CI for CER in NMB Graph 

NMB CL Also Tangent to 85.5% Confidence Ellipse
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Confidences Statements for CI for NMB

• If both confidence limits negative, 95% confident therapy 
is bad value

– i.e., for values of WTP < 28,200

• If both confidence limits positive, 95% confident therapy 
is good value

– i.e., for values of WTP > 245,200

• If one confidence limit positive and one negative, cannot 
be 95% confident value of 2 therapies differs

– i.e., for values of WTP > 28,200 and < 245,200

CI for ICER, CI for NMB, Acc Curve All Use Same Lines

CI for ICER, CI for NMB, Acc Curve All Use Same Lines
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Similarities and Differences

• For magnitude estimation for a single value of W, NMB 
provides information that is NOT shared by acceptability 
curve or CI for ICER

– i.e., generally isn’t identifying lines through origin as 
are acceptability curve and CI for ICER

• For meta-question about ranges of W for which we can 
or can’t be confident of value, NMB provides information 
that IS shared 

– Nonparametrically, identification of whether CI for 
NMB includes or excludes 0 relies on same lines 
through origin as acceptability curve and CI for ICER

– Parametrically, CI for NMB and acceptability curve  
use transformation of Fieller’s theorem equation      
for CI for ICER

Acceptability & CI for CER

• Acceptability curve plots confidence intervals for the 
cost-effectiveness ratio

– e.g., the value of WTP where the height of the 
acceptability curve equals 0.025 and/or 0.975 
represent the 95% confidence limits for the cost-
effectiveness ratio

• In current example, 95% CL = 28,200 and 245,200

Acceptability & CI for NMB

• Acceptability curves also report values of WTP for which 
one of NMB confidence limits equals 0

– e.g. if we calculate NMB using values of WTP where 
height of acceptability curve equals 0.025 and/or 
0.975, one of 95% confidence limits for NMB will 
equal 0

– If we calculate NMB using values of WTP where 
height of the acceptability curve equals 0.25 and/or 
0.75, one of 50% confidence limits for NMB will equal 
0
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Review of Results for Experiment 1

Confidence interval for CER
CER CI: (28,200 to 245,200)
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“Pattern 1” Findings

• Refer to findings like experiment 1’s as pattern 1 findings

• Occur when difference in effect is significant 

• Know we are observing pattern 1 finding when:

– Confidence interval for cost-effectiveness ratio 
excludes Y axis (i.e., LL < PE < UL)

– Both NMB confidence limits curves intersect decision 
threshold (0) once

– Acceptability curve intersects horizontal lines drawn 
at both 0.025 and 0.975

Region of Acceptability Related to Pattern 1

• For this curve, widest pattern 1 finding is 78.81% CI
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3 Ranges of WTP for Pattern 1 Findings

Confident more

effective therapy

is bad value

Confident more

effective therapy

is good value

Willingness to Paoo- oo

Not confident

value of two

therapies differs

• In cases where some of boundaries between regions occur at 
negative values of willingness to pay, may not always observe 
all 3 regions on acceptability curve or NMB plot

Confidence vs Value of Information

• Requiring statistical significance (i.e., confidence) prior to 
the adoption of a new therapy that maximizes NMB runs 
counter to expected utility theory

– Said to impose opportunity costs on patients

Quality of the Evidence

• Rejection of significance tests for cost-effectiveness 
ratios/NMB does not imply that decisions should be 
made using point estimates alone

– Particularly if a decision can be made to collect more 
information

• “Value of information” represents difference in expected 
value of outcome given current decision and expected 
value of outcome that would result if we had perfect 
information (EVPI)

– Determined based on probability decision is wrong 
and costs of wrong decision if it occurs
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Per-Person Expected Value of Perfect Information
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Calculating Per-Person EVPI, 28,200
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Calculating Per-Person EVPI, 100,000
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Calculating Per Person EVPI, 245,200
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Per-Person EVPI Graph
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Two Basic Parametric EVPI Curve Patterns
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Per Person EVPI

• Can be large because either there is a lot of uncertainty 
or because cost of mistakes (i.e., W) is large

– e.g., might already be very certain (e.g., 99.99% 
confident), but if cost of mistakes is extremely high 
might want even greater certainty

• Can be small because either there is a lot of certainty or 
because costs of mistakes are small

– e.g., might be very uncertain (e.g., only 10% 
confident), but if the cost of mistakes is extremely low, 
might not need greater certainty
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Total EVPI

• Total EVPI = N * EVPIpp

– where N = number of people for whom treatment is 
indicated

• Net EVPI = Total EVPI - Cost of gathering additional

information

• Given additional research is unlikely to yield perfect 
information, net EVPI at best provides upper bound on 
how much additional research should be funded

– Need to focus on value of expected change in 
information

• Can also be used to evaluate particular uncertainties for 
which research is needed: expected value of perfect 
information for a parameter (EVPPI)

Potential VOI Caveat

• “...value of information methods require consideration of 
the totality of the evidence base....”

• “...may not therefore be appropriate to simply base value 
of information estimates on the sampling variability from 
a single study where other studies exist.”

Asserted EVPI Advantages

• Quantitative measure of when we have enough 
information to make a decision

• Avoids inference

• Avoids temptation to use ‘need for evidence’ to delay 
decision making

• Recognises information gathering is not costless

• Can distinguish value of different types of information 
which might guide study design
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Rejection of Inference Applies to Everything

• Nothing different about economic decisions and other 
decisions

– If we adopt an EVPI decision criterion – i.e., reject an 
inference criterion – for making economic decisions 
about therapies, should do same for other decisions

• FDA should stop requiring significance for drug 
adoption decisions

• Economics (theoretical)  vs medical (life and death) 
decision making?

• Significance testing may be transactionally efficient

– Assuming there are costs of switching therapies, 
interpret signficance tests as a mechanism for limiting 
switching and reducing these costs

• Can build these (and other costs) into EVPI

Acceptability Curves When More Than 2 
Therapies

Acceptability Curves When More than 2 Therapies

• When comparing more than 2 therapies, common to 
graph one curve per therapy with curves representing 
proportion of time therapy is best value (e.g., for Rx1: 
fraction that Rx1 > Rx2 AND Rx1 > Rx3)
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Counting Methods

• Calculate MB for each Rx using WTP; count MBs where  
Rx 1’s MB greater than both Rx 2’s and Rx 3’s

• Calculate NMB for 1 vs 2, 1 vs 3, and 2 vs 3 using WTP; 
count NMBs where Rx 1’s NMB vs Rx 2 > 0 AND Rx 1’s 
NMB vs Rx 3 > 0

Violation of Independence of Irrelevant Alternatives

• Best criterion violates Independence of irrelevant 
alternatives (IIA)

– IIA a ubiquitous assumption in welfare economics / 
social choice theory

• IIA: Choice between alternatives x and y depends on 
preferences for x and y only (and is not affected by 
preferences for z)

– e.g., if Rx 1 is chosen over Rx2 and Rx3, Rx1 must 
be both better than Rx2 and better than Rx3

• Focusing solely on fraction of time a therapy is best 
throws away information about the preference between 2 
therapies (e.g., x and y) when a third therapy (e.g., z) is 
best

Fraction of Time Best

• Suppose making choice for 7 people between 3 mutually 
exclusive modes of travel. Choose single mode for all 7

– buses (B), cabs (C), or walking trails (W)

• Suppose most preferred choices are as follows:

• If basing decision solely on first preferences, heights of 
“multi-way” acceptability curves would equal:

– walk, 3/7; bus, 2/7; cab, 2/7

• i.e., walking is “best”

Obs 1 2 3 4 5 6 7

Pref W W W B B C C
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Fraction of Time Better Value

• Suppose people who prefer cabs or buses least prefer 
walking; people who prefer walking least prefer cabs.

• Rank-ordered preferences would be:

• B is preferred to both W (4/7) and C(5/7)

• C is preferred to W (4/7), but not B (2/7)

• W is least preferred (3/7 against both B and C)

Obs 1 2 3 4 5 6 7

1st W W W B B C C

2nd B B B C C B B

3rd C C C W W W W

Summary

• According to best rule, W is best and indifferent between 
B and C

• If instead consider complete set of preferences:

– B preferred to both W and C

– C preferred to W 

What’s the Alternative

• Return to use of multiple pairwise comparisons

– Strong tradition in economic choice theory, e.g., basis 
of Arrow impossibility theorem

• Analog to “best” algorithm is to select therapy that in 
pair-wise comparison is better than all other therapies

– ??? Significantly better ???
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What’s the Alternative (2)

• For each value of WTP plot lowest percentage 
acceptable against all other therapies

– If B better than W 4/7 of time and better than C 5/7, 
height of B curve = 4/7

– If C better than B 3/7 of time and better than W  4/7, 
height of C curve = 3/7

– If  W better than both B and C 3/7 of time, height of W 
curve = 3/7

• Best alternative has highest curve

– i.e., select B because it is better than other 2 options 
at least 4/7 of the time

• Note, sum of heights of curves >1

Example For Single Value of W

• Assume 4 Rx, 1-4; WTP = 1900

Fraction of times NMB for Rx (row identifiers in 
column 1) exceeds NMB for other Rxs (column 
identifiers)

Rx 1 Rx 2 Rx 3 Rx 4

Rx 1 -- 0.188 0.574 0.737

Rx 2 0.812 -- 0.892 0.921

Rx 3 0.426 0.108 -- 0.782

Rx 4 0.262 0.079 0.218 --

• Rx 2 better than Rx 1 81.2% of time, than Rx 3 89.2% of 
time, and Rx 4 92.1% of time

• Rx 2 better curve has height of 0.812 for W=1900

Simulation

Rx1 Rx2 Rx3

Cost 5000
(5000)

10,000
(2500)

16000
(2500)

QALY 0.5
(0.3)

0.6
(0.2)

0.7
(0.2)

C1 C2 C3 Q1 Q2 Q3

C1 1.0

C2 -0.9 1.0

C3 -0.9 0.9 1.0

Q1 0.9 -0.9 -0.9 1.0

Q2 -0.9 0.9 0.9 -0.9 1.0

Q3 -0.9 0.9 0.9 -0.9 0.9 1.0
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Multi-way Curve Simulation, Best Curves

• Rx1 “best” for W between 0 and 97,500 (red dashed line)

• Rx2 never “best” (green dashed line

• Rx3 “best” for W greater than 97,500 (blue dashed    
line)
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Multi-way Curve Simulation, Better Frontier

• While Rx2 never “best”, between 53K and 60K it is better 
(green solid line) than both Rx1and Rx3
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Multi-way Curve Simulation, Better Frontier (2)

• While Rx1 “best” for W up to 97,500 (red dashed line), 
Rx3 (solid blue line) better than both Rx1 and Rx2 for 
W>60K
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Counting Methods

• MB:

– Calculate MB for each Rx using WTP

– Count MBs where  Rx 1’s MB greater than Rx 2’s

– Count MB’s where Rx 1’s MB greater tha Rx3’s

– Height of curve equals minimum of 2 fractions

• NMB:

– Calculate NMB for Rx 1 vs 2, Rx 1 vs 3, and Rx 2 vs 3 
using WTP

– Count NMBs where Rx 1’s NMB greater than Rx 2’s

– Count NMBs where Rx 1’s NMB  greater than Rx 3’s

– Height of curve equals minimum of 2 fractions

In Usual Practice...

• While example suggests differences can be dramatic, for 
typical kinds of results, 2 approaches probably have 
similar recommendations over wide ranges of W

• However:

– Can observe differences around boundaries between 
therapies

– Compared to “Best” algorithm, “Better” algorithm 
yields more appropriate measure of magnitude of 
probability  therapy is better than alternative

Typical Kinds of Results, Best Curves
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Typical Kinds of Results, Better Curves


